RAJA NARENDRALAL KHAN WOMEN'S COLLEGE (AUTONOMOUS)

MIDNAPORE-721102, WEST BENGAL, INDIA

Faculty of Science

Department of Zoology

The Syllabus for the UNDERGRADUATE Programme

in

Zoology

Under NEP 2020 w.e.f. 2023-2024

PROGRMME OUTCOME

Upon completion of B.Sc. Zoology Honours or Honours with Research Programme, the graduates will be able to -

- 1. Know the fundamental principles in Zoology. Recognize the relationships between structure and functions of biological organization in animals.
- 2. Analyse the principles, classification, form, and function of animal evolution, and to compare the structure of Prokaryotes and Eukaryotes.
- 3. Understand the animal diversity which includes animal classification with taxonomy and their diagnostic characteristics.
- 4. Apply knowledge and understanding the protection and restoration of biological diversity, ecological integrity, and health. Understand a range of conservation management.
- 5. Understand the evolutionary history and main characteristics of the animal groups.
- 6. Comprehend and critical analysis of population processes, dynamics and interactions, and associated models.
- 7. Comprehension of the structure, biogeography, and diversity of ecosystems in relation to climate, geology, soils, paleo-historical and evolutionary factors.
- 8. Understand the applied biological sciences such as Sericulture, Aquaculture and Apiculture.
- 9. Collect, record, and analyze data using appropriate ecological, genetic, and physiological techniques in the field and laboratory.
- 10.Use information technology systems effectively to analyze and interpret data, and the evidence for research.
- 11.Develop the writing skills required in the programme which includes publishing research articles, oral and poster presentations at conferences.
- 12.Explain the molecular and cellular basis of physiological functions in animals.
- 13. Provide innovative skills which will enable to develop the knowledge and skills required for employment such as biochemistry, microbiology, aquaculture, apiculture, and biotechnology on the level of the gene, genome, and their functions.
- 14. Perform practical skills in the areas of developmental biology, biochemistry, cell and molecular biology, genetics, immunology, and microbiology.

UG ZOOLOGY (MAJOR) SYLLABUS

				Allot.	Class	
Sem	Code	Title of the Paper	Credit	Th.	Prc.	Marks
	ZOOMJ101	NON-CHORDATES	4	3	1	75
Ι	ZOOSEC101	APICULTURE	3	2	1	50
	ZOOMJ201	ECOLOGY	4	3	1	75
II	ZOOSEC201	SERICULTURE	3	2	1	50
	ZOOMJ301	SYSTEMATICS & TAXONOMY	4	3	1	75
	ZOOMJ302	CHORDATES	4	3	1	75
III	ZOOSEC301	AQUARIUM FISH MANAGEMENT	3	2	1	50
	ZOOMJ401	COMPARATIVE ANATOMY	4	3	1	75
	ZOOMJ402	ANIMAL PHYSIOLOGY	4	3	1	75
		PARASITOLOGY				
		OR APPLIED ENTOMOLOGY AND				
IV	ZOOMJ403	NEMATOLOGY	4	3	1	75
	ZOOMJ501	CELL BIOLOGY	4	3	1	75
	ZOOMJ502	MOLECULAR BIOLOGY	4	3	1	75
	ZOOMJ503	BIOCHEMISTRY	4	3	1	75
V	ZOOMJ504	ENDOCRINOLOGY	4	3	1	75
	ZOOMJ601	GENETICS	4	3	1	75
	ZOOMJ602	IMMUNOLOGY	4	3	1	75
	ZOOMJ603	DEVELOPMENTAL BIOLOGY	4	3	1	75
VI	ZOOMJ604	EVOLUTION	4	3	1	75
	ZOOMJ701	ANIMAL BEHAVIOUR	4	3	1	75
	ZOOMJ702	COMPUTATIONAL BIOLOGY	4	3	1	75
	ZOOMJ703	BIOPHYSICS	4	3	1	75
VII	ZOOMJ704	MICROBIOLOGY	4	3	1	75
	ZOOMJ801	METHODS IN BIOLOGY	4	3	1	75
	ZOOMJ802	BIOTECHNOLOGY	4	3	1	75
		RESEARCH PROJECT				
		Or DSE-I				
		DSE-II				
VIII		DSE-III	12 or (4×3)			225 or 75×3

UG ZOOLOGY (SEC) SYLLABUS

Sem	Code	Title of the Paper	Credit	Allot.	Class	Marks
				Th.	Prc.	
Ι	ZOOSEC101	SEC01T: APICULTURE	3	2	1	50
II	ZOOSEC201	SEC02T: SERICULTURE	3	2	1	50
III	ZOOSEC301	SEC03T: AQUARIUM FISH MANAGEMENT	3	2	1	50

UG ZOOLOGY MINOR SYLLABUS

Sem	Code	Title of the Paper	Credit	Allot. Class		Marks
bem	Coue	The of the Taper	creat	Th.	Prc.	
Ι	ZOOMI101 (1A)	NON-CHORDATE	4	3	1	75
II	ZOOMI201 (2A)	NON-CHORDATE	4	3	1	75
III	ZOOMI301 (1B)	ECOLOGY	4	3	1	75
IV	ZOOMI401 (2B)	ECOLOGY	4	3	1	75
V	ZOOMI501 (1C)	PARASITOLOGY	4	3	1	75
VI	ZOOMI601 (2C)	PARASITOLOGY	4	3	1	75
VII	ZOOMI701 (1D)	ANIMAL BEHAVIOUR	4	3	1	75
VIII	ZOOMI801 (2D)	ANIMAL BEHAVIOUR	4	3	1	75

UG ZOOLOGY IDC/MDC

Sem	Code	Title of the Paper	Credit	Marks
Ι	IDC-I	ENVIRONMENTAL STUDIES (ENVS)	3	50
Π	IDC-II	CLIMATE CHANGE & DIASTER MANAGEMENT (CCDM)	3	50
III	IDC-III	DIGITAL FLUENCY AND ARTIFICIAL INTELLIGENCE (DF & AI)	3	50

UG ZOOLOGY VAC

Sem	Code	Title of the Paper	Credit	Marks
Ι	VAC-III	UNDERSTANDING INDIA	2	50
	VAC-IV	INDIAN CONSTITUTION & ETHICS	2	50
		PHYSICAL FITNESS & SOCIAL		
II	VAC-I	AWARENESS	2	50
	VAC-II	MENTAL HEALTH & WELLBEING	2	50

UG ZOOLOGY AEC

Sem	Code	Title of the Paper	Credit	Marks
Ι	AEC-I	ENG-I	2	50
II	AEC-II	BNG/HIN-I	2	50
III	AEC-III	BNG/HIN-II	2	50
IV	AEC-IV	ENG-II	2	50

RAJA NARENDRALAL KHAN WOMEN'S COLLEGE (AUTONOMOUS)

Semester-I

Course Structure

Sl.	Name of the Courses	No. of	Credits	Full Marks
No.		Papers		
1	Major	01	04	75
2	Minor	01	04	75
3	IDC/MDC	01	03	50
4	AEC ENGLISH	01	02	50
5	SEC	01	03	50
6	VAC (Group-C)	02	04(02+02)	100(50+50)
	Total	07	20	400

Raja N. L. Khan Women's College (Autonomous)

Curriculum for Undergraduate in Zoology

[NEP 2020]

Semester-I

Paper Code	Name of the Subject	Nature	Teaching Scheme in hour per week		Feaching Scheme Credit in hour per week		Marks
			L	Τ	Р		
ZOOMJ101	MJ101T: Non- Chordates-I	Major Course	3	0	0	4	75
	MJ101P: Non- Chordates-I	Major Course	0	0	1		
	(Practical)						
	MI101T: Non- Chordates	Minor Course	3	0	0		75
ZOOMI101	M101P: Non- Chordates (Practical)	Minor Course [Practical]	0	0	1	4	
ZOOSEC101	SEC101T: Apiculture	SEC	2	0	0	3	50
	SEC101P: Apiculture (Practical)	SEC (Practical)	0	0	1		

L=Lecture, T=Tutorial, P=Practical

Course objectives and expected outcome

This course provides an introduction to the basics of animal classification. It covers various phylum (major and minor) under non-chordates as per the hierarchy. The students will learn about their properties, identifying characters, specialized organ-systems, diversity and the basic scheme of classification. Therefore, this fundamental course of classical Zoology will be helpful for the students to be inclined more into the beauty Animal Kingdom.

Course Contents:

Sl. No.	TOPICS	Allotted
		Lecture
1.	Unit1: Basics of Animal Classification	4
	 Definitions: Classification, Systematics and Taxonomy; 	
	Taxonomic Hierarchy, Taxonomic types;	
	 Codes of Zoological Nomenclature; Principle of priority; 	
	Synonymy and Homonymy	
	• Concept of classification, Six kingdom classification (Carl	
	Woese)	
2.	Unit2: Protista	10
	• Protozoa	
	• General characteristics and Classification up to phylum	
	(according to Levineet.al., 1981) Locomotion In Euglena,	
	Paramoecium and Amoeba	
	Conjugation in <i>Paramoecium</i>	
	• Life cycle and pathogenicity of Plasmodium <i>vivax</i> and	
	Entamoeba histolytica	
3.	Unit 3: Metazoa	2
	• Evolution of symmetry and segmentation of Metazoa	
4.	Unit4: Porifera	5
	• General characteristics and Classification up to classes	
	(Ruppert & Barnes, 1994);	
	Canal system and spicules in sponges	
5	Unit5: Cnidaria	1
5.	• Concret abarratoristics and Classification up to alassas	+
	• Otheral characteristics and Classification up to classes.	
	(Ruppert & Dames, 1994)	
	Folymorphism in Unidaria	2
0.	Unito: Ctenopnora	2
	• General characteristics, Classification up to Classes. (Ruppert	
	& Barnes, 1994)	

7.	Unit7: Platyhelminthes	6
	• General characteristics and Classification up to classes.	
	(Ruppert & Barnes, 1994)	
	• Life cycle: pathogenicity and control measures of <i>Fasciola</i>	
	hepatica	
8.	Unit8: Nematoda	4
	General characteristics and Classification up to classes. (Ruppert & Barnes, 1994)	
	• Life cycle: pathogenicity and control measures of <i>Wuchereria</i>	
	bancrofti	
	Parasitic adaptations in helminthes	
9.	Unit8: Annelida	5
	 General characteristics and Classification up to classes. (Ruppert & Barnes, 1994) 	
	 Excretion in Annelida through nephridia. 	
10.	Unit 10: Arthropoda	6
200	General characteristics and Classification up to classes.	Ŭ
	(Ruppert & Barnes, 1994).	
	• Respiration in Arthropoda (Gills in prawn and trachea in	
	cockroach).	
	• Metamorphosis in Insects.	
	Social life in termite	
11.	Unit 11: Onychophora	2
	General characteristics and Evolutionary significance	
12.	Unit12: Mollusca	5
	• General characteristics and Classification up to classes. (Ruppert & Barnes, 1994)	
	Nervous system and torsion in Gastropoda	
13.	Unit 13: Echinodermata	5
	General characteristics and Classification upto classes. (Ruppert &	
	Dames, 1994) Water-vascular system in Asteroidea	
	Larval forms in Echinodermata	
	Affinities with Chordates	
14.	Unit14: Hemichordata	4
	General characteristics of phylum Hemichordata. Relationship with	
	non-chordates and chordates	
* C	Classification for metazoans to be followed from: Rupert and Barnes, 199	94,
6	thEdition.	
	Classification to be followed from Rupert and Barnes, 1994, 6thEdition	
	uggested Keadings:	1+
r r R	aupters international Edition	iii
S S	auricers international Edition. overtebrates by Brusca & Brusca Second edition 2002	
	The Invertebrates: A New Synthesis, III Edition, Blackwell Science	
, I		

Major 101 P Non-Chordates

Credits 01

Course Contents:

1. Identification of Amoeba, Euglena, Entamoeba, Opalina, Paramecium

2. Identification of Sycon, Neptune's Cup, Obelia, Physalia, Millepora, Aurelia, Tubipora, Gorgonia, Metridium.

3. Identification and significance of adult Fasciola hepatica, Ascaris lumbricoides.

4. Staining/ mounting of any protozoa/helminth isolated from the gut of cockroach.

5. Study of following specimens:

a. Annelids-Aphrodite, Nereis, Heteronereis, Sabella, Serpula, Chaetopterus,

Pheretima, Hirudinaria

b. Arthropods - Limulus, Palamnaeus, Palaemon, Daphnia, Balanus, Sacculina, Cancer, Eupagurus, Scolopendra, Julus, Bombyx, Periplaneta, termites and honey bees Onychophora - Peripatus

c. Molluscs-Chiton, Dentalium, Pila, Doris, Helix, Unio, Ostrea , Pinctada, Sepia,

Octopus, Nautilus

d. Echinoderms-Pentaceros/Asterias, Ophiura, Clypeaster, Echinus, Cucumaria and Antedon

6. Study of digestive system, septal nephridia and pharyngeal nephridia of earthworm

7. Mounting of mouth parts and dissection of digestive system and nervous system of

Periplaneta

SEC 101: Apiculture

SEC 101T: Apiculture

Course objectives and expected outcome

The student will be able to understand the basics of beekeeping tools, equipment, and managing beehives; understand the primary life cycle of the honeybees; learn and manage beehives for honey production and pollination; understand the marketing of various bee products. The course will be useful for providing self-employment to the learner.

Course Contents:

Sl.	TOPICS	Allotted
No.		Lecture
1.	Unit 1: Biology of Bees	3
	History, Classification and Biology of Honey Bees Social Organization	
	of Bee Colony	
2.	Unit 2: Rearing of Bees	5
	Artificial Bee rearing (Apiary), Beehives – Newton and Langstroth	
	Bee Pasturage	
	Selection of Bee Species for Apiculture Bee Keeping Equipment	
	Methods of Extraction of Honey (Indigenous and Modern)	
3.	Unit 3: Diseases and Enemies	2
	Bee Diseases and Enemies Control and Preventive measures	
4.	Unit 4: Bee Economy	4
	Products of Apiculture Industry and its Uses (Honey, Bees Wax,	
	Propolis), Pollen propagation	
5.	Unit 5: Entrepreneurship in Apiculture	6
	Bee Keeping Industry – Recent Efforts, Modern Methods in employing	
	artificial Beehives for cross pollination in horticultural gardens	
Sugges	ted Readings:	
	Prost, P. J. (1962). Apiculture. Oxford and IBH, New Delhi.	
	Bisht D.S., Apiculture, ICAR Publication.	
	Singh S., Beekeeping in India, Indian council of Agricultural Researce	ch, New
	Delhi.	
	Economic Zoology by G. S. Shukla & V. B. Upadhyay	

SEC 1P: Apiculture

Course Contents:

- 1. Studies of Bee hives
- a. Construction of bee hives
- b. Identification of Bee caste
- c. Extraction of honey
- 2. Visit to an Apiculture farm.

Credits: 01

Course objectives and expected outcome

This course provides an introduction to the basics of animal classification. It covers various phylum (major and minor) under non-chordates as per the hierarchy. The students will learn about their properties, identifying characters, specialized organ-systems, diversity and the basic scheme of classification. Therefore, this fundamental course of classical Zoology will be helpful for the students to be inclined more into the beauty Animal Kingdom.

Course Contents:

Sl. No.	TOPICS	Allotted
		Lecture
1.	Unit1: Basics of Animal Classification	4
	• Definitions: Classification, Systematics and Taxonomy;	
	Taxonomic Hierarchy, Taxonomic types;	
	• Codes of Zoological Nomenclature; Principle of priority;	
	Synonymy and Homonymy	
	• Concept of classification, Six kingdom classification (Carl	
	Woese)	
2.	Unit2: Protista	10
	• Protozoa	
	• General characteristics and Classification up to phylum	
	(according to Levineet.al., 1981) Locomotion In Euglena,	
	Paramoecium and Amoeba	
	Conjugation in <i>Paramoecium</i>	
	• Life cycle and pathogenicity of Plasmodium vivax and	
	Entamoeba histolytica	
3.	Unit 3: Metazoa	2
	• Evolution of symmetry and segmentation of Metazoa	
4.	Unit4: Porifera	5
	 General characteristics and Classification up to classes 	
	(Ruppert & Barnes, 1994);	
	• Canal system and spicules in sponges	
5.	Unit5: Cnidaria	4
	• General characteristics and Classification up to classes.	
	(Ruppert & Barnes, 1994)	
	Polymorphism in Cnidaria	
6.	Unit6: Ctenophora	2
	• General characteristics, Classification up to Classes. (Ruppert	
	& Barnes, 1994)	

7.	Unit7: Platyhelminthes	6
	• General characteristics and Classification up to classes.	
	(Ruppert & Barnes, 1994)	
	• Life cycle: pathogenicity and control measures of <i>Fasciola</i>	
	hepatica	
8.	Unit8: Nematoda	4
	 General characteristics and Classification up to classes. 	
	(Ruppert & Barnes, 1994)	
	• Life cycle: pathogenicity and control measures of <i>Wuchereria</i>	
	bancrofti	
	Parasitic adaptations in helminthes	
9.	Unit8: Annelida	5
	• General characteristics and Classification up to classes.	
	(Ruppert & Barnes, 1994)	
	Excretion in Annelida through nephridia.	
10.	Unit 10: Arthropoda	6
	 General characteristics and Classification up to classes. 	
	(Ruppert & Barnes, 1994).	
	• Respiration in Arthropoda (Gills in prawn and trachea in	
	cockroach).	
	• Metamorphosis in Insects.	
	Social life in termite	
11.	Unit 11: Onychophora	2
	General characteristics and Evolutionary significance	
12.	Unit12: Mollusca	5
	• General characteristics and Classification up to classes.	
	(Ruppert & Barnes, 1994)	
	• Nervous system and torsion in Gastropoda	
12	Unit 13: Echinodormata	5
13.	General characteristics and Classification unto classes (Runnert &	5
	Barnes 1994)	
	Water-vascular system in Asteroidea.	
	Larval forms in Echinodermata	
	Affinities with Chordates	
14.	Unit14: Hemichordata	4
	General characteristics of phylum Hemichordata. Relationship with	
	non-chordates and chordates	
* C	Classification for metazoans to be followed from: Rupert and Barnes, 199	94,
6	thEdition.	
* C	Classification to be followed from Rupert and Barnes, 1994, 6thEdition	
S S	uggested Readings:	1.
	Support and Barnes, R.D. (2006). Invertebrate Zoology, VIII Edition. Ho	lt
	aunders International Edition.	
	ivertebrates by Brusca & Brusca. Second edition, 2002.	
▶ T	ne invertebrates: A New Synthesis, III Edition, Blackwell Science	

Minor 101 P Non-Chordates

Credits 01

Course Contents:

1. Identification of Amoeba, Euglena, Entamoeba, Opalina, Paramecium

2. Identification of Sycon, Neptune's Cup, Obelia, Physalia, Millepora, Aurelia, Tubipora, Gorgonia, Metridium.

3. Identification and significance of adult Fasciola hepatica, Ascaris lumbricoides.

4. Staining/ mounting of any protozoa/helminth isolated from the gut of cockroach.

5. Study of following specimens:

a. Annelids-Aphrodite, Nereis, Heteronereis, Sabella, Serpula, Chaetopterus,

Pheretima, Hirudinaria

b. Arthropods - Limulus, Palamnaeus, Palaemon, Daphnia, Balanus, Sacculina, Cancer, Eupagurus, Scolopendra, Julus, Bombyx, Periplaneta, termites and honey bees Onychophora - Peripatus

c. Molluscs-Chiton, Dentalium, Pila, Doris, Helix, Unio, Ostrea , Pinctada, Sepia,

Octopus, Nautilus

d. Echinoderms-Pentaceros/Asterias, Ophiura, Clypeaster, Echinus, Cucumaria and Antedon

6. Study of digestive system, septal nephridia and pharyngeal nephridia of earthworm

7. Mounting of mouth parts and dissection of digestive system and nervous system of

Periplaneta

RAJA NARENDRALAL KHAN WOMEN'S COLLEGE (AUTONOMOUS)

Semester-II Course Structure

S1.	Name of the Courses	No. of	Credits	Full
No.		Papers		Marks
1	Major	01	04	75
2	Minor	01	04	75
3	IDC/MDC	01	03	50
4	AEC MIL (Beng./ Hindi)	01	02	50
5	SEC	01	03	50
6	VAC (Group-C)	02	04(2+2)	100(50+50)
7	CESR	01	02	50
	Total	08	22	450

Raja N. L. Khan Women's College (Autonomous) Curriculum for Undergraduate in Zoology [NEP 2020]

Semester-II

			Teaching			Marks	
Paper Code	Name of the	Nature	Scheme in		Credit		
-	Subject		h	our	per		
				week			
			L	Т	Р		
	MJ201: Ecology	Major	3	0	0		75
ZOOMJ201		Course- 1				4	
	MJ102P:	Major	0	0	1		
	Ecology	Course1					
	(Practical)	[Practical]					
	M201T: Non-	Minor	3	0	0		75
	Chordates	Course-					
ZOOMI201		1				4	
	M201P: Non-	Minor	0	0	1		
	Chordates	Course-1					
	(Practical)	[Practical]					
	SEC201T:	SEC	2	0	0	3	50
ZOOSEC201	Sericulture						
	SEC201P:	SEC	0	0	1		
	Sericulture (Practical)	(Practical)					

L=Lecture,T=Tutorial,P=Practical

Major 201T Ecology

Course objectives and expected outcome

This course introduces the basics of ecosystem structure, composition, and significance. This study provides information about factors affecting the population and community. Developed environmental monitoring skills, including conduct of experiments and data analysis. It also teaches about the significance of wildlife, the threatened category, and the conservation strategy of wildlife animals in an ecosystem.

Course Contents:

Sl. No.	TOPICS	Allotted Lecture
1.	Unit 1: Introduction to Ecology	4
	• History of ecology, Autoecology and synecology, Levels of	
	organization, Laws of limiting factors, Study of physical	
	factors, Atmosphere, Hydrosphere and Biosphere	
2	Unit 2: Population	20
	Unitary and Modular populations	
	• Unique and group attributes of population: Demographic	
	factors, lifetable, fecundity table,	
	• Survivorship curves, dispersal and dispersion.	
	• Geometric, exponential and logistic growth, equation and	
	patterns, r and k strategy, Populations	
	 Population regulation-density-dependent and independent factors 	
	• Population Interactions, Gause's Principle with laboratory	
	and field examples, Lotka-Volterra equation for competition	
3	Unit 3: Community	11
5	• Community characteristics: species diversity, abundance.	
	dominance, richness,	
	• Vertical stratification, Ecotone and edge effect, Ecological	
	succession with one example	
4	Unit 4: Ecosystem	10
	• Definition and types of ecosystems with example, Foodchain:	
	Detritus and grazing food chains,	
	• Linear and Y-shaped food chains, Food web, Energy flow through	
	theecosystem, Ecological pyramids and Ecological efficiencies.	
	 Nutrient and biogeochemical cycle, Nitrogen cycle Human modified acceptatem 	
	• Human mounted ecosystem	

	5 Unit 5: Applied Ecology	5
	• Wildlife conservation (in-situ and ex-situ conservation)	
	• Management strategies for tiger conservation; Wildlife	
	protection act (1972)	
	Suggested Readings:	
\succ	Krebs, C.J. (2001). Ecology. VI Edition. Benjamin Cummings.	
\succ	Odum, E.P., (2008). Fundamentals of Ecology. Indian Edition.	
\succ	Brooks/ColeRobert Leo Smith Ecology and field biology.Harper and Row	publisher.
\succ	Ecology: Theories & Application (2001).4th Edition by Peter Stilling.	
\succ	Ecology by Cain, Bowman & Hacker. 3 rd edition. Sinauer associates	

Major 201P Ecology

Credits 01

Course contents:

- 1. Study of life tables and plotting of survivorship curves of different types from the hypothetical/real data provided
- 2. Determination of population density in a natural/hypothetical community by Quadrate method and calculation of Shannon-Weiner diversity index for the same community
- 3. Study of an aquatic ecosystem: Phytoplankton and zooplankton, Measurement of area, temperature, turbidity/penetration of light, Determination of pH, and Dissolved Oxygen content (Winkler'smethod), Chemical Oxygen Demand and free CO2.
- 4. Project report on costal ecosystem

SEC 201T: Sericulture

<u>Course objectives and expected outcome</u>

Understand concepts of sericulture industry and demonstrate interdisciplinary skills acquired in mulberry plant cultivation, silkworm rearing, diagnosis of diseases and pest of mulberry and silkworm and their prevention. The course will be useful for providing self-employment to the learner.

Sl. No.	TOPICS	Allotted			
		Lecture			
1.	Unit 1: Introduction	2			
	Sericulture: Definition, Types of silkworms, Distribution and				
	Races, Exotic and indigenous races. Mulberry and non-				
	mulberry Sericulture				
	-				
2.	Unit 2: Biology of Silkworm	4			
	Life cycle of Bombyx mori				
	Structure of silk gland and secretion of silk				
3	Unit 3. Rearing of Silkworms	10			
5.		10			
	Selection of mulberry variety and establishment of mulberry				
	garden Rearing house and rearing appliances.				
	Disinfectants: Formalin, bleaching powder, RKO				
	Silkworm rearing technology.				
	Early age and Late age rearing Types of mountages				
	Spinning, harvesting and storage of cocoons				
4.	Unit 4: Pests and Diseases	3			
	Pests of silkworm: Uzi fly, dermestid beetles and vertebrates				
	Pathogenesis of silkworm diseases: Protozoan, viral, fungal				

Course Contents:

	and bacterial Control and prevention of pests and diseases				
5.	Unit 5: Entrepreneurship in Sericulture	4			
	Prospectus of Sericulture in India: Sericulture industry in				
	different states, employment, potential in mulberry and non-				
	mulberry sericulture.				
Suggested Readings:					
Economic Zoology by G. S. Shukla & V. B. Upadhyay					

SEC 201P: Sericulture

Credits: 01

Course Contents:

- **1.** Visit to a sericulture farm and prepare a report.
- 2. Identification of life cycle stages of *Bombyx mori*.

This course provides an introduction to the basics of animal classification. It covers various phylum (major and minor) under non-chordates as per the hierarchy. The students will learn about their properties, identifying characters, specialized organ-systems, diversity and the basic scheme of classification. Therefore, this fundamental course of classical Zoology will be helpful for the students to be inclined more into the beauty Animal Kingdom.

Course Contents:

Sl. No.	TOPICS	Allotted
		Lecture
1.	Unit1: Basics of Animal Classification	4
	 Definitions: Classification, Systematics and Taxonomy; 	
	Taxonomic Hierarchy, Taxonomic types;	
	 Codes of Zoological Nomenclature; Principle of priority; 	
	Synonymy and Homonymy	
	• Concept of classification, Six kingdom classification (Carl	
	Woese)	
2.	Unit2: Protista	10
	• Protozoa	
	• General characteristics and Classification up to phylum	
	(according to Levineet.al., 1981) Locomotion In Euglena,	
	Paramoecium and Amoeba	
	Conjugation in <i>Paramoecium</i>	
	• Life cycle and pathogenicity of Plasmodium <i>vivax</i> and	
	Entamoeba histolytica	
3.	Unit 3: Metazoa	2
	• Evolution of symmetry and segmentation of Metazoa	
4.	Unit4: Porifera	5
	• General characteristics and Classification up to classes	
	(Ruppert & Barnes, 1994);	
	Canal system and spicules in sponges	
5.	Unit5: Cnidaria	4
	• General characteristics and Classification up to classes.	
	(Ruppert & Barnes, 1994)	
	Polymorphism in Cnidaria	
6.	Unit6: Ctenophora	2
	• General characteristics, Classification up to Classes. (Ruppert	
	& Barnes, 1994)	
	, , , , , , , , , , , , , , , , , , ,	

7.	Unit7: Platyhelminthes	6
	• General characteristics and Classification up to classes.	
	(Ruppert & Barnes, 1994)	
	• Life cycle: pathogenicity and control measures of <i>Fasciola</i>	
	hepatica	
8.	Unit8: Nematoda	4
	 General characteristics and Classification up to classes. 	
	(Ruppert & Barnes, 1994)	
	• Life cycle: pathogenicity and control measures of <i>Wuchereria</i>	
	bancrofti	
	Parasitic adaptations in helminthes	
9.	Unit8: Annelida	5
	• General characteristics and Classification up to classes.	
	(Ruppert & Barnes, 1994)	
	Excretion in Annelida through nephridia.	
10.	Unit 10: Arthropoda	6
	 General characteristics and Classification up to classes. 	
	(Ruppert & Barnes, 1994).	
	• Respiration in Arthropoda (Gills in prawn and trachea in	
	cockroach).	
	• Metamorphosis in Insects.	
	Social life in termite	
11.	Unit 11: Onychophora	2
	General characteristics and Evolutionary significance	
12.	Unit12: Mollusca	5
	• General characteristics and Classification up to classes.	
	(Ruppert & Barnes, 1994)	
	• Nervous system and torsion in Gastropoda	
12	Unit 13: Echinodormata	5
13.	General characteristics and Classification unto classes (Runnert &	5
	Barnes 1994)	
	Water-vascular system in Asteroidea.	
	Larval forms in Echinodermata	
	Affinities with Chordates	
14.	Unit14: Hemichordata	4
	General characteristics of phylum Hemichordata. Relationship with	
	non-chordates and chordates	
* C	Classification for metazoans to be followed from: Rupert and Barnes, 199	94,
6	thEdition.	
* C	Classification to be followed from Rupert and Barnes, 1994, 6thEdition	
S S	uggested Readings:	1.
	Support and Barnes, R.D. (2006). Invertebrate Zoology, VIII Edition. Ho	lt
	aunders International Edition.	
	ivertebrates by Brusca & Brusca. Second edition, 2002.	
▶ T	ne invertebrates: A New Synthesis, III Edition, Blackwell Science	

Minor 201 P Non-Chordates

Credits 01

Course Contents:

1. Identification of Amoeba, Euglena, Entamoeba, Opalina, Paramecium

2. Identification of Sycon, Neptune's Cup, Obelia, Physalia, Millepora, Aurelia, Tubipora, Gorgonia, Metridium.

3. Identification and significance of adult Fasciola hepatica, Ascaris lumbricoides.

4. Staining/ mounting of any protozoa/helminth isolated from the gut of cockroach.

5. Study of following specimens:

a. Annelids-Aphrodite, Nereis, Heteronereis, Sabella, Serpula, Chaetopterus,

Pheretima, Hirudinaria

b. Arthropods - Limulus, Palamnaeus, Palaemon, Daphnia, Balanus, Sacculina, Cancer, Eupagurus, Scolopendra, Julus, Bombyx, Periplaneta, termites and honey bees Onychophora - Peripatus

c. Molluscs-Chiton, Dentalium, Pila, Doris, Helix, Unio, Ostrea , Pinctada, Sepia,

Octopus, Nautilus

d. Echinoderms-Pentaceros/Asterias, Ophiura, Clypeaster, Echinus, Cucumaria and Antedon

6. Study of digestive system, septal nephridia and pharyngeal nephridia of earthworm

7. Mounting of mouth parts and dissection of digestive system and nervous system of

Periplaneta

RAJA NARENDRALAL KHAN WOMEN'S COLLEGE (AUTONOMOUS)

Semester-III Course Structure

S1.	Name of the Courses	No. of	Credits	Full
No.		Papers		Marks
1	Major	02	08(4+4)	150(75x2)
2	Minor	01	04	75
3	IDC/MDC	01	03	50
4	AEC MIL (Beng./ Hindi)	01	02	50
5	SEC	01	03	50
	Total	06	20	375

Raja N. L. Khan Women's College (Autonomous)

Curriculum for Undergraduatein Zoology

[NEP 2020]

Semester-III

			Teaching			Marks		
Paper Code	Name of the Subject	Nature	Scheme in hour per week		Scheme in hour per week		Credit	
			L	Τ	Р			
ZOOMJ301	MJ301T: Systematics & Taxonomy	Major Course	3	0	0	4	75	
	MJ301P: Systematics & Taxonomy (Practical)	Major Cource	0	0	1			
ZOOMJ302	MJ302T: Chordates	Major Cource	3	0	0	4	75	
	MJ302P: Chordates (Practical)	Major Cource	0	0	1			
	MI301T: Ecology	Minor Course	3	0	0		75	
ZOOMI301	MI301T: Ecology (Practical)	Minor Course [Practical]	0	0	1	4		
ZOOSEC301	SEC301T: Aquarium fish management	SEC	2	0	0	3	50	
	SEC301P: Aquarium fish management (Practical)	SEC (Practical)	0	0	1			

L=Lecture, T=Tutorial, P=Practical

Major 301 : Systematics & Taxonomy

Credits: 04

Major 301 T: Systematics & Taxonomy

Credits: 03

Course objectives and expected outcome

This course introduces the science of taxonomy and systematics, exploring the methods and principles used to classify and naming organisms. It covers the history, principles, and methodologies of systematics, including morphological and molecular techniques, and phylogenetic analysis. The course will also discuss the importance of taxonomy and systematics in understanding biodiversity, evolution, and conservation.

Sl. No.	TOPICS	Allotted
1	Unit 1. Introduction to Townson and Sustantias	
1.	Onit 1: Introduction to Taxonomy and Systematics	4
	• Overview of taxonomy & systematics	
	• Historical perspective and the significance of taxonomy in	
	biological sciences.	
2.	Unit 2: The Species Concept	7
	• Different species concepts (biological, morphological,	
	phylogenetic).	
	• Challenges and debates in defining species. Cryptic species, ring	
	species concept.	
	-	
3.	Unit 3: Taxonomic Hierarchy and Nomenclature	6
	• Rules and conventions (ICZN, ICBN).	
	• Binomial nomenclature, typification, and the role of herbaria	
	and museums.	
4.	Unit 4: Morphological Techniques in Taxonomy	8
	• Traditional morphological methods for classification.	-
	• Importance of morphological traits in different groups	
5	Unit 5. Malagular Systematics	0
5.	Application of DNA sequencing in toxonomy	0
	 Application of DNA sequencing in taxonomy. Molecular markers and their applications in systematics. 	
	• Molecular markers and their applications in systematics.	
6.	Unit 6: Phylogenetics: Principles and Methods	8
	Phylogenetic trees: types, UPGMA & Maximum Parsimony	
	• Methods of phylogenetic analysis (cladistics, phenetics).	
7.	Unit 7: Conservation and Taxonomy	4
	• Role of taxonomy in conservation biology.	
	• Conservation priorities and the identification of keystone	
	species, Umbrella species, Flagship species & Indicator Species.	

Suggested Readings:

- > "Systematics and the Origin of Species" by Ernst Mayr.
- "Principles of Systematic Zoology" by Eldredge and Cracraft, and "Molecular Systematics" edited by Hillis, Moritz, and Mable.
- > "Principle of Taxonomy" V. C. Kapor

Major 301 P: Systematics & Taxonomy

Credits: 01

Course Contents:

- 1. Type study and identification: Typification and identifying different organisms.
- 2. Preparation of Dichotomous Keys
- 3. Construction of phylogenetic tree: UPGMA
- 4. Phylogenetic analysis software: Practical use of various computational tools. Case studies using tools/software like CLUSTALW, MEGA.

Major 302: Chordates

Major 302T: Chordates

Course objectives and expected outcome

Identify the chordates and classify them. Develop understanding on the diversity of life regarding chordates. Describe general taxonomic rules on animal classification of chordates. Classify Protochordate to Mammalia with taxonomic keys. Understand Mammals with specific structural adaptations. Understand the origin and evolutionary relationship of different phyla from Protochordate to Mammalia. To identify chordates based on special identifying characters Define the main characteristics of chordates. Recall the classification of Phylum Chordata. Describe the different chordate animals (in lab). Apply the relationship between structure and function of organ-systems, and their adaptation with environment List each class in its taxonomic position according to the modifications of structures of different organs in each taxon. Gain knowledge about zoogeographical realms and distribution of chordates in world

Course Contents:

Sl. No.	Topics	Lectures
1.	 Unit 1: Introduction to Chordates General characteristics and outline classification of Phylum Chordata. 	4
2.	 Unit 2: Protochordata General characteristics and classification of sub-phylum Urochordata and Cephalochordata up to Classes. Retrogressive metamorphosis in Ascidia. Chordate Features and Feeding in Branchiostoma. 	5
3.	 Unit 3: Origin of Chordata Dipleurula concept and the Echinoderm theory of origin of chordates. Advanced features of vertebrates over Protochordata. 	3
4.	 Unit 4: Agnatha General characteristics and classification of Cyclostomes up to order. 	2
5.	 Unit 5: Pisces General characteristics and classification of Chondrichthyes and Osteichthyes up to Subclasses. Accessory respiratory organ, migration and parental care in fishes Swim bladder in fishes. Classification up to Sub-Classes. Lung fishes: Characteristics and their distribution. 	4

Credits: 04

6.	Unit 6: AmphibiaGeneral characteristics and classification up to living Orders.	4
	• Metamorphosis and parental care in Amphibia.	
	• Defence mechanism in Amphibia.	
7.	 Unit 7: Reptilia General characteristics and classification up to living Orders. Poison apparatus and Biting mechanism in Snake. 	4
8.	 Unit 8: Aves General characteristics and classification up to Sub-Classes Exoskeleton and migration in Birds. Principles and aerodynamics of flight. 	6
9.	 Unit 9: Mammals General characters and classification up to living orders. Affinities of Prototheria. Exoskeleton derivatives of mammals. Adaptive radiation in mammals with reference to locomotory appendages. Echolocation in Micro chiropterans and Cetaceans. 	6
10.	 Unit 10: Zoogeography Zoogeographical realms, Plate tectonic and Continental drift theory, distribution of animals in different realms 	4
Note: Clas Followed to be follo Suggested 1. Young, J. 2. Pough H 3. Darlingt 4. Hall B.H and Bartle 5. Parker, 7 Willam (E 6. Kardong McGraw H 7. Kent, G McGraw H 8. Nelson,	 ssification from Protochordata, Agnatha, Reptilia, Aves and Mamm from Young (1981), for Pisces to be followed from Nelson, 2016, for wed from Duellman and Trueb (1986) Readings: J. Z. (2004). The Life of Vertebrates. III Edition. Oxford university presses in Vertebrate life, VIII Edition, Pearson International. ton P.J. The Geographical Distribution of Animals, R.E. Krieger Pub Co X. and Hallgrimsson B. (2008). Strickberger's Evolution. IV Edition. Joint Publishers Inc. T. J. &Haswell, W. (1972). Text Book of Zoology, Volume II: Marshall ads.) 7th Ed. Macmillan Press, London. g, K. V. (2002). Vertebrates: Comparative anatomy, function evolution. The Hill. J. C. & Carr, R. K. (2001). Comparative anatomy of the Vertebrates. 9th Hill. J.S., (2006) : Fishes of the World, 4th Edn., Wiley. 	alian to be Amphibia s. s. nes and Tata Ed.

Major 302P: Chordates

List of Practical:

- 1. Identification of the following animals
- Protochordata
 - Balanoglossus, Herdmania, Branchiostoma
- Agnatha Petromyzon, Myxine
- Fishes

Scoliodon, Sphyrna, Pristis, Torpedo, Chimaera, Mystus, Heteropneustes, Labeo rohita, Labeo bata, Labeo calbasu, Puntius, Amblyopharyngodon, Catla, Cirhinus, Exocoetus, Echeneis, Anguilla, Hippocampus, Tetrodon/ Diodon, Anabas, Flat fish

* Amphibia

Necturus, Bufo, Hyla, Alytes, Axolotl, Tylototriton

* Reptilia

Chelone, Trionyx, Hemidactylus, Varanus, Uromastix, Chamaeleon, Ophiosaurus, Draco, Bungarus, Vipera, Naja, Hydrophis, Zamenis, Crocodylus.

- * Mammalia: Megachiroptera & Microchiroptera
- Aves: Passer, Pycnonotus, Alcedo, Dinopium
- 2. Dissection of brain and pituitary of *Tilapia sp.*
- 3. Dissection of Urinogenital system of *Tilapia sp*
- 4. Pecten from Fowl head
- 5. IXth and Xth cranial nerve of *Chana* sp.
- 6. Afferent and Efferent arterial system of Chana sp.

SEC 301: Aquarium fish Management

SEC 301T: Aquarium fish Management

Course objectives and expected outcome

To understand the present state and future potential of Aquarium fish industry, student will gain knowledge on the aquarium construction and aquarium managements. Aquarium fish behavior and biology, which is important to maintain the aquarium fish handling and transportation. This course helpful to student to identify the fishes and study their characteristics. This portion also helps our students to study the feeding habit, breeding habit and behavior. This knowledge is very much helpful to aquarium fish culture related different aspects and their budget analysis.

Sl. No.	Topics	Allotted Lectures
1.	Unit 1: Introduction to Aquarium fish keeping: Overview of	6
	Aquaculture, Potential scope of aquarium fish industry as a cottage	
	industry, exotic and indigenous species of aquarium fishes.	
2.	Unit 2: Biology of aquarium fishes: Common characters and sexual	8
	dimorphism of fresh water and marine aquarium fishes such as Guppy,	
	Molly, Sword tail, Goldfish, Angel fish, Blue morph, Anemone fish and	
	butterfly fish etc.	
3.	Unit 3: Food and feeding of aquarium fishes: Use of live fish feed	6
	organisms. Preparation and composition of formulated fish feed,	
	Aquarium fish as larval predator.	
4.	Unit 4: Fish transportation: Live fish transport- fish handling, packing	5
	and forward techniques.	
5.	Unit 5: Maintenance of aquarium: General aquarium maintenance-	5
	budget for setting up an aquarium fish farm as a cottage industry.	
Sugge	ested Readings:	
	1. Fisheries Science by C. B. L. Srivastava	
	2. Ornamental fish Culture by Chanda, Chakravorty, Dasgupta & Das	S

SEC 301P: Aquarium fish Management

- 1. Aquarium construction and decoration
- 2. Aquarium fish collection, handling and management
- 3. Identification of aquarium fishes.
- 4. Visit to aquarium farm and submission a report.

Credits: 01

Credits: 02

Minor 301T Ecology

Course objectives and expected outcome

This course introduces the basics of ecosystem structure, composition, and significance. This study provides information about factors affecting the population and community. Developed environmental monitoring skills, including conduct of experiments and data analysis. It also teaches about the significance of wildlife, the threatened category, and the conservation strategy of wildlife animals in an ecosystem.

Course Contents:

Sl. No.	TOPICS	Allotted
1	Unit 1. Introduction to Foology	
1.	• History of acology	4
	• History of ecology, Autoecology and synecology,	
	Study of physical factors, Atmosphere, Hydrosphere	
	and Biosphere	
2.	Unit 2: Population	20
	• Unitary and Modular populations	
	• Unique and group attributes of population:	
	Demographic factors, lifetable, fecundity table,	
	• Survivorship curves, dispersal and dispersion.	
	• Geometric, exponential and logistic growth, equation	
	and patterns, r and k strategy, Populations	
	• Population regulation-density-dependent and	
	independent factors	
	• Population Interactions, Gause's Principle with	
	laboratory and field examples, Lotka-Volterra	
	equation for competition and elimination.	
3.	Unit 3: Community	11
	• Community characteristics: species diversity,	
	abundance, dominance, richness,	
	• Vertical stratification, Ecotone and edge effect,	
	Ecological succession with one example	
4.	Unit 4: Ecosystem	10
	• Definition and types of ecosystems with example, Food	
	chain: Detritus and grazing food chains,	
	• Linear and Y-shaped food chains, Food web, Energy flow	
	through the ecosystem, Ecological pyramids and	
	Ecological efficiencies.	
	 Nutrient and biogeochemical cycle, Nitrogen cycle 	
	Human modified ecosystem	

5.	Unit 5: Applied Ecology	5				
	• Wildlife conservation (in-situ and ex-situ					
	conservation)					
	• Management strategies for tiger conservation;					
	Wildlife protection act (1972)					
Suggeste	ed Readings:					
➤ Krebs,C.	Krebs,C.J.(2001).Ecology.VI Edition. Benjamin Cummings.					
➢ Odum,E.P.,(2008).Fundamentals of Ecology. Indian Edition.						
Brooks/ColeRobert Leo Smith Ecology and field biology.Harper and Row						
publisher.						
➢ Ecology:	Ecology: Theories & Application (2001).4th Edition by Peter Stilling.					
Ecology by Cain, Bowman & Hacker. 3 rd edition. Sinauer associates						

Minor 301P Ecology

Credits 01

Course contents:

- 1. Determination of population density in a natural/hypothetical community by Quadrate method and calculation of Shannon-Weiner diversity index for the same community
- 2. Study of an aquatic ecosystem: Phytoplankton and zooplankton, Determination of pH, and Dissolved Oxygen content (Winkler's method) and free CO2.
- 3. Project report on costal ecosystem

RAJA NARENDRALAL KHAN WOMEN'S COLLEGE (AUTONOMOUS)

Semester-IV Course Structure

S1.	Name of the Courses	No. of	Credits	Full
No.		Papers		Marks
1	Major	03	12(4x3)	225(75x3)
2	Minor	01	04	75
3	AEC ENGLISH	01	02	50
4	Professional Course	01	02	50
	Total	06	20	400

Raja N. L. Khan Women's College (Autonomous)

Curriculum for Undergraduate in Zoology

[NEP 2020]

Semester-IV

			Teaching			Marks								
Paper code	Name of the Subject	Nature	Scheme in hour per week		Scheme in hour per week		Scheme in hour per week		Scheme in hour per week		Scheme in hour per week		Credit	
			L	Т	P									
ZOOMJ401	MJ401T: Comparative anatomy	Major Course	3	0	0	4	75							
	MJ401P: Comparative anatomy (Practical)	Major Course	0	0	1									
ZOOMJ402	MJ402T: Animal Physiology	Major Course	3	0	0	4	75							
	MJ402P: Animal Physiology (Practical)	Major Course	0	0	1									
ZOOMJ403	MJ403T: Parasitology Or Applied Entomology and Nematology	Major Course	3	0	0	4	75							
	MJ403P: Parasitology Or Applied Entomology and Nematology (Practical)	Major Course	0	0	1									
	MI401 T: Ecology	Minor Course	3	0	0		75							
ZOOMI401	M401 P: Ecology (Practical)	Minor Course [Practical]	0	0	1	4								

L=Lecture, T=Tutorial, P=Practical

Major 401:	Comparative anatomy	
------------	----------------------------	--

Credits: 04

Major 401T: Comparative anatomy

Credits: 03

Course objectives and expected outcome

The students will be able to understand the basic structure, organization of anatomical systems like digestive systems, respiratory system, urinogenital system, central nervous system, olfactory system etc., and their modification in the major transitions in vertebrate's evolution.

Sl. No.	Topics	Allotted		
		Lectures		
1.	Unit 1: Integumentary System	5		
	Structure, function and derivatives of integument in amphibian, birds and mammals.			
2.	Unit 2: Skeletal System	5		
	Overview of axial and appendicular skeleton: Jaw suspension; Visceral arches			
3.	Unit 3: Digestive System	6		
	Comparative anatomy of stomach: dentition in mammals.			
4.	Unit 4: Respiratory System	6		
	Respiratory organs of fish, amphibian, birds and mammals.			
5.	Unit 5: Circulatory System	7		
	General plan of circulation, Comparative account of heart and aortic arches.			
6.	Unit 6: Urinogenital System	7		
	Succession of kidney, Evolution of urinogenital ducts, Types of mammalian uteri.			
7.	Unit 7: Nervous System	6		
	Comparative account of brain. Cranial nerves in mammals.			
8.	Unit 8: Sense Organs	6		
	Classification of receptors, Brief account of olfactory and			
	auditory receptors in vertebrate.			
-----------------------	--	----------------	--	--
Suggest	ed Readings:			
≻	Kardong, K.V. (2005). Vertebrates' Comparative Anatomy, Function Evolution. IV Edition. McGraw-Hill Higher Education.	n and		
>	Kent, G.C. and Carr R.K. (2000). Comparative Anatomy of the Vertebrates. IX Edition. The McGraw-Hill Companies			
\blacktriangleright	Hilderbrand, M (1988). Analysis of Vertebrate Structure. 3rd Edition and Sons.	on, John Wiley		
\checkmark	Saxena, R.K. & Saxena, S.C. (2008): <i>Comparative Anatomy of Vert</i> Books Pvt. Ltd.	ebrates, Viva		

Major 401P: Comparative anatomy

- (1) Study of placoid, cycloid and ctenoid scales through permanent slides/photographs.
- (2) Study of disarticulated skeleton of Toad, Pigeon and Guineapig
- (3) Demonstration of Carapace and plastron of turtle.
- (4) Identification of mammalian skulls: One herbivorous (Guineapig) and one carnivorous(Dog) animal
- (5) Dissection of Tilapia: Circulatory system, Brain, pituitary, urinogenital system.

Major 402T: Animal Physiology

Course objectives and expected outcome

The course will give students in-depth knowledge of the numerous physiological organ systems as well as the significance of the human body's integrative activities. To get a deeper understanding of and respect for mammalian physiology; to be able to explain how critical physiological systems—such as the digestive, respiratory, cardiac, neurological, muscular, reproductive, and renal systems—work; to be aware of the body's signaling system and various physiological disease.

Course Contents:

Sl. No.	Contents		
1.	Unit1: Physiology of Digestion: Structural organisation and functions of Gastrointestinal tract and Associated glands; Mechanical and chemical digestion of food, absorption of Carbohydrates, Lipids, Proteins; Disease related to digesion, PCM	5	
2.	Unit 2: Physiology of Respiration: Resipratory organs, Mechanism of Respiration, Respiratory volumes and capacities, transport of Oxygen and Carbon dioxide in blood, Dissociation curves and the factors influencing it, respiratory pigments; Carbon monoxide poisoning	5	
3.	Unit 3: Physiology of Circulation: Components of Blood and their functions; Structure and functions of haemoglobin, Haemostasis; Blood clotting system, Fibrinolytic system Haemopoiesis; Basic steps and its regulation Blood groups; ABO and Rh factor, Circulation related disease	6	
4.	Unit 4: Physiology of Heart: Structure of mammalian heart, Coronary Circulation, Structure and working of conducting myocardial fibres, Origin and conduction of cardiac impulses Cardiac Cycle and cardiac output Blood pressure and its regulation, Heart related disease	6	
5.	Unit 5: Physiology of Nervous System: Structural organization of nervous system, resting membrane potential, Origin of action potential and its propagation across the myelinated and unmyelinated nerve fibers; Types of synapse, Synaptic transmission and Neuromuscular junction; Reflex action and its types, Receptors	8	
6.	Unit 6: Muscular Physiology: Ultra structure of skeletal muscle, Muscle properties, Types of muscle, Physical and chemical basis of muscle contraction	5	
7.	Unit 7: Renal Physiology: Structure of Kidney and its functional	5	

Credits: 04

	unit, Mechanism of urine formation, Regulation of acid- base balance	
8.	Unit 8: Reproductive physiology: Structure of Primary and Secondary sex organ of Human, Menstrual Cycle, Physiological changes during pregnancy, Parturition, Amniocentesis, MTP, Lactation, STD	5
Sugge	sted Readings:	
≻	Guyton, A.C. & Hall, J.E. (2006). Textbook of Medical Physiology. XI Hercourt	Edition.
>	Eckert Animal Physiology: Mechanisms and adaptations Randall, Burgg French Vander A, Sherman J. and Luciano D. (2014). Vander's Physiology: The Mechanism of Body Function. XIII Edition, McGraw Hil	ren and Human lls
\checkmark	Victor P. Eroschenko. (2008). Di Fiore's Atlas of Histology with Functions. XII Edition. Lippincott W. & Wilkins.	nctional
A	Vander A, Sherman J. and Luciano D. (2014). Vander's Human Physiolo Mechanism of Body Function. XIII Edition, McGraw Hills	gy: The

Major 402P: Animal Physiology

Credits: 01

- 1. Determination of ABO Blood group
- 2. Enumeration of red blood cells and white blood cells using haemocytometer
- 3. Estimation of haemoglobin using Sahli's haemoglobinometer
- 4. Preparation of haemin and haemochromogen crystals
- 5. Recording of blood pressure using as phygmomanometer

Major 403T: Parasitology

Course objectives and expected outcome:

The course will provide an understanding of the diversity and biology of parasites, besides the epidemiological aspects of different parasitic diseases will be explored and students will be able to gain knowledge regarding the mode of transmission of parasitic diseases and its preventive measures.

Course Contents:

Sl. No.	Topics	Allotted			
		Lecture			
1)	Unit 1: Introduction to Parasitology Types of parasites and hosts. The basic concept of Parasitism: Commensalism, Symbiosis, Phoresis, Mutualism, Predation, Carrier and Vectors. Host parasitic interactions	10			
2)	Unit 2: Parasitic Protists - Study of Morphology, Life Cycle, Prevalence, Epidemiology, Pathogenicity, Diagnosis, Prophylaxis and Treatment of <i>Plasmodium vivax, Trypanosoma gambiense,</i> <i>Leishmania donovani</i>	6			
3)	Unit 3: Parasitic Platyhelminthes -Study of Morphology, Life Cycle, Prevalence, Epidemology, Pathogenicity, Diagnosis, Prophylaxis and Treatment of, <i>Diphyllobothrium latum</i> , <i>Taenia</i> <i>solium</i>	5			
4)	Unit 4: Parasitic Nematodes Study of Morphology, Life Cycle, Prevalence, Epidemology, Pathogenicity, Diagnosis, Prophylaxis and Treatment of <i>Ascaris</i> <i>lumbricoides, Brugia malayi</i> and <i>Loa loa</i> ; Nematode Plant interaction; Gall formation.	7			
5)	Unit 5: Parasitic Arthropods Biology, importance and control of ticks (Soft tick <i>Ornithodoros</i> , Hard tick <i>Ixodes</i>), mites (<i>Sarcoptes</i>), Lice(<i>Pediculus</i>), Flea(<i>Xenopsylla</i>) and Bug (<i>Cimex</i>)	10			
6)	Unit 6: Zoonotic disease (with special reference to) Wuchereria bancrofti, Schistosoma haematobium, Paragonimus westermani. Giardia intestinalis	7			
Suggested Readings:					
Arora, D. R and Arora,B.(2001) Medical Parasitology.II Edition. CBS Publications and Distributors					
 E.R Noble and G.A. Noble(1982) Parasitology: The biology of animal parasites, V Edition, Lea & Febiger 					
Ahmed, N., Dawson, M., Smith, C. and Wood, Ed, (2007) Biology of Disease					
> Tayl	or and Francis Group				

Credits: 04

- Parija, S. C. Textbook of medical parasitology, protozoology & helminthology(Text and colour Atlas), II Edition, All India Publishers & Distributers, Medical Books Publishers, Chennai, Delhi
- Rattan Lal Ichhpujani and Rajesh Bhatia. Medical Parasitology,III Edition ,Jaypee Brothers Medical Publishers(P) Ltd.,New Delhi.
- Page66Meyer, Olsen & Schmidt's Essestials of Parasitology, Murray, D.Dailey, W.C. Brown Publishers.
- K. D. Chatterjee(2009). Parasitology:Protozoology and Helminthology. XIII Edition, CBS Publishers & Distributors (P) Ltd.

Major 403P: Parasitology

Credits: 01

Course Contents:

1. Study of life stages of *Giardia intestinalis*, *Trypanosoma gambiense*, *Leishmania donovani*, *Plasmodium* sp. through permanent slides / photographic plate.

2. Study of plant parasitic root knot nematode, Meloidogyne from the soil sample.

3. Identification: Pediculous sp., Xenopsylla sp., Cimex sp., Taenia sp.

4. Study of nematode/cestode parasites from the intestines of Poultry bird/Cockroach (Intestine can be procured from poultry/market as a by-product.

Major 403 Applied Entomology and Nematology	Credits 04
Major 403T Applied Entomology and Nematology	Credits 03

Course objectives and expected outcome:

Applied Entomology and Nematology focuses on the practical application of knowledge about insects and nematodes to solve problems in agriculture, horticulture, forestry, and public health. This field integrates scientific research with real-world applications to manage pest populations, promote beneficial insects, and ensure sustainable practices.

Sl. No.	Topics		
		Lecture	
1.	Unit 1Basics of Entomology Insect diversity and adaptation: Morphological adaptation of insects: Head and antenna; Mouthparts of honey bee and cockroach; Thorax and thoracic appendages- legs and wings [General concept]. Physiological adaptation in cockroach: Digestive system: Alimentary canal and digestive glands, digestion; Respiratory organs and mechanism of gaseous exchange; Sense organs compound eyes, chemoreceptors. General Characteristics of Class Insecta and living orders with examples:Orthoptera, Dictyoptera, Hemiptera, Coleoptera, Lepidoptera, Diptera, Hymenoptera, Anoplura, Siphonaptera(Imms, A.D., 1938); Ticks and Mites: General features; difference between ticks and mites; Soft ticks and Hard ticks.	7	
2.	Unit 2 Medical Entomology Concept of Vectors: Mechanical and biological vectors, modes of transmission; Biological vector and disease cycle. Biology of Anopheles, Culex and Aedes:Study of mosquito borne diseases- Malaria, Dengue, and Filariasis; control of mosquitoes. Biology of Musca domestica:Disease relationship; control of house fly. Biology and systematicsof Bed bug Cimex lectularius; disease relationship; Control of Bed Bug. Ticks as Causative agents and Vectors: Rickettsiosis, Tick- borne encephalitis. Forensic Entomology: General perceptions and status of Forensic entomology; Insects and other arthropods of forensic importance; Pattern of insect succession on carcass; Postmortem Interval (PMI) and its estimation process; Applications and limitations of Forensic Entomology	10	
3.	Unit 3 Agricultural Entomoloy Concept of insect pest; Economic Injury Level (EIL), Economic Threshold Level (ETL), Dynamics of EIL; Pests of major crops (Life cycle, Nature of damage and control measures): Pests of Paddy, <i>Scirpophaga incertulus</i> ; Pests of Jute, <i>Anomis sabulifera</i> ; Pests of brinjal, <i>Leucinodes orbonalis</i> ; Stored grain pest: <i>Sitophilus oryzae</i> ; Invasive insect pests of India and their consequences. Insect Pest control: Chemical, Mechanical, Cultural and Biological control	7	

	measures; Integrated Pest Management (IPM) Study of appliances used						
	in pest control: Dusters; Sprayers- categories of sprayers, agricultural						
	Aircrafts; Granule applicator; soil injectors.						
4.	Unit 4 General awareness in Agriculture and related branches of life	9					
	sciences						
	History and economic importance of plant-parasitic nematodes;						
	Nematode parasitism; Fundamentals of nematode morphology,						
	taxonomy, biology and ecology; Nematode interactions with micro-						
	organisms; Entomopathogenic nematodes; Symptoms and disease cycle						
	of important nematode diseases caused by Meloidogyne, Heterodera,						
	Pratylenchus, Ditylenchus, Radopholus, Aphelenchoides, Anguina,						
	Bursaphelenchus, Rotylenchulus, Xiphinema etc. Basic principles of						
	nematode management - regulatory and quarantine, cultural, host						
	resistance, biological and chemical methods; Isolation of nematode from						
	soil and plant materials, and other basic nematological techniques.						
5.	Unit 5 Symptoms caused by nematodes with examples	10					
	Interaction between plant parasitic nematodes and disease causing fungi,						
	bacteria and viruses . Different methods of nematode management.						
	Cultural methods (Crop rotation, fallowing, soil amendments, other land						
	management techniques). Physical methods (Soil solarization, hot water						
	treatment). Biological methods, Chemical methods (fumigants, non						
	fumigants).Resistant varieties.						

403 P Applied Entomology and Nematology

Credits 01

- 1. Dissection and temporary mounting of: Antennae and mouth parts of Cockroach, and Mosquito
- 2. Methods of collection, preservation, and identification of economically important insects.
- 3. Identification of following insect pests (Order, family and specimen characters only): *Scirpophaga incertulus; Sitophilus oryzae; Callosobruchus chinensis, Leucinodes orbonalis; Anomis sabulifera; Pyrilla perpusilla.*
- 4. Identification and medical significance of following insects (adults) through permanent slides/photographs: *Aedes sp., Culex sp., Anopheles sp.* [for mosquito, larvae and both sexes of adults],
- 5. Visits to any one place of applied entomological significance (submission of a field report): a. Agricultural field/ forest for on spot study of pests and damage caused.
- 6. Extraction of nematodes from soil and plant tissues following combined Cobb's sieving technique and Baermann funnel technique
- 7. Counting and estimation of plant parasitic nematodes
- 8. Experimental techniques used in pathogenicity studies with root-knot nematode

Minor 401T Ecology

Course objectives and expected outcome

This course introduces the basics of ecosystem structure, composition, and significance. This study provides information about factors affecting the population and community. Developed environmental monitoring skills, including conduct of experiments and data analysis. It also teaches about the significance of wildlife, the threatened category, and the conservation strategy of wildlife animals in an ecosystem.

Course (Contents:
----------	-----------

Sl. No.	TOPICS					
1.	Unit 1: Introduction to Ecology					
	• History of ecology, Autoecology and synecology,					
	Levels of organization, Laws of limiting factors,					
	Study of physical factors, Atmosphere, Hydrosphere					
	and Biosphere					
2.	Unit 2: Population	20				
	Unitary and Modular populations					
	• Unique and group attributes of population:					
	Demographic factors, lifetable, fecundity table,					
	• Survivorship curves, dispersal and dispersion.					
	• Geometric, exponential and logistic growth, equation					
	and patterns, r and k strategy, Populations					
	• Population regulation-density-dependent and					
	independent factors					
	• Population Interactions, Gause's Principle with					
	laboratory and field examples, Lotka-Volterra					
	equation for competition and elimination.					
3.	Unit 3: Community	11				
	• Community characteristics: species diversity,					
	abundance, dominance, richness,					
	• Vertical stratification, Ecotone and edge effect,					

4. Unit 4: Ecosystem 10					
• Definition and types of ecosystems with example,					
Foodchain: Detritus and grazing food chains,					
• Linear and Y-shaped food chains, Food web, Energy					
flow through theecosystem, Ecological pyramids and					
Ecological efficiencies.					
• Nutrient and biogeochemical cycle, Nitrogen cycle					
Human modified ecosystem					
5.Unit 5: Applied Ecology5					
• Wildlife conservation (in-situ and ex-situ					
conservation)					
• Management strategies for tiger conservation;					
Wildlife protection act (1972)					
Suggested Readings:					
Krebs,C.J.(2001).Ecology.VI Edition. Benjamin Cummings.					
Odum, E.P., (2008). Fundamentals of Ecology. Indian Edition.					
➢ Brooks/ColeRobert Leo Smith Ecology and field biology.Harper and	Row				
publisher.					
Ecology: Theories & Application (2001).4th Edition by Peter Stilling.					
Ecology by Cain,Bowman & Hacker. 3 rd edition.Sinauer associates					

Minor 401P Ecology

Credits 01

- 4. Determination of population density in a natural/hypothetical community by Quadrate method and calculation of Shannon-Weiner diversity index for the same community
- 5. Study of an aquatic ecosystem: Phytoplankton and zooplankton, Determination of pH, and Dissolved Oxygen content (Winkler'smethod) and free CO2.
- 6. Project report on costal ecosystem

RAJA NARENDRALAL KHAN WOMEN'S COLLEGE (AUTONOMOUS)

Semester-V Course Structure

Sl.	Name of the Courses	No. of	Credits	Full marks
No.		Papers		
1	Major	04	16(4x4)	300(75x4)
2	Minor	01	04	75
Total		05	20	375

Raja N. L. Khan Women's College (Autonomous)

Curriculum for Undergraduate in Zoology

[NEP 2020]

Semester-V

			Code]	Teach	ing		Marks
Sl. No.	Name of the Subject	Nature	Scheme in hour per week		Credit			
				L	Т	Р		
ZOOMJ501	MJ501T: Cell Biology	Major Course		3	0	0	4	75
	MJ501P: Cell Biology (Practical)	Major Cource		0	0	1		
ZOOMJ502	MJ502T: Molecular Biology	Major Cource		3	0	0	4	75
	MJ502P: Molecular Biology (Practical)	Major Cource		0	0	1		
ZOOMJ503	MJ503T: Biochemistry	Major Cource		3	0	0	4	75
	MJ503P: Biochemistry (Practical)	Major Cource		0	0	1		
ZOOMJ504	MJ504T: Endocrinology	Major Cource		3	0	0	4	75
	MJ504P: Endocrinology (Practical)	Major Cource		0	0	1		
	MI501 T: Parasitology	Minor Course		3	0	0		75
ZOOMI501	MI501 P: Parasitology (Practical)	Minor Course [Practical]		0	0	1	4	

L=Lecture, T=Tutorial, P=Practical

Major 501T: Cell Biology

Course objectives and expected outcome

Students will acquire comprehensive knowledge of membrane structure and composition, protein transport and trafficking, the cytoskeleton, cell movement, and the extracellular matrix. They will gain a thorough understanding of the mechanisms of cell division and its regulation through different checkpoints. The cell cycle, apoptosis, signal transduction, and cancer biology will be integral components of the course.

Course Contents:

Sl. No.	Topics	Allotted
1.	Unit1: Overview of Cells	5
1.	Basic structure of Prokaryotic and Eukaryotic cells Cell wall	5
	nucleus mitochondria. Golgi bodies lysosomes endoplasmic	
	reticulum, peroxisomes, Viruses, Viroid, Prion and Mycoplasma.	
2.	Unit 2: Plasma Membrane	8
	Structure of model membrane, lipid bilayer and membrane protein	, i i i i i i i i i i i i i i i i i i i
	diffusion, osmosis, ion channels, active transport, membrane pumps,	
	mechanism of sorting and regulation of intracellular transport,	
	electrical properties of membranes, Ultra structure and composition of	
	Plasma membrane: Fluid mosaic model, Transport across membrane:	
	Active and Passive transport, Facilitated transport, Cell junctions: Tight	
	junctions, Gap junctions, Desmosomes.	
3.	Unit3: Cytoplasmic micorganelles I	5
	Structure and Functions: Endoplasmic Reticulum, Golgi Apparatus,	
	Lysosomes, Protein sorting and mechanisms of vesicular transport	
4.	Unit4: Cytoplasmic micorganelles II	5
	Mitochondria: Structure, Semi-autonomous nature, Endosymbiotic	
	hypothesis, Mitochondrial Respiratory Chain, Chemi-osmotic	
	hypothesis, Peroxisomes: Structure and Functions, Centrosome:	
	Structure and Functions	
5.	Unit 5: Cytoskeleton	5
	Type, structure and functions of cytoskeleton, Accessory proteins of	
	microfilament & microtubule, A brief idea about molecular motors.	
6.	Unit 6: Nucleus	5
	Structure of Nucleus: Nuclear envelope, Nuclear pore complex,	
	Nucleolus, Chromatin: Euchromatin and Hetrochromatin and	
	packaging (nucleosome).	_
7.	Unit 7: Cell cycle and Cancer	7
	Cell cycle and its regulation, Cancer (Concept of oncogenes and	
	tumor suppressor genes with special reference to p53,	
	Retinoblastoma and Ras and APC). Therapeutic interventions of	
	uncontrolled cell growth, apoptosis. Mitosis and Meiosis: Basic	
	process and their significance.	
8.	Unit 8: Cell Signaling	5

Credits: 04

Hormones and their receptors, cell surface receptor, signaling through G-protein coupled receptors, signal transduction pathways, second messengers, regulation of signaling pathways, bacterial chemotaxis and quorum sensing.

Suggested Readings:

- Lewin'sCells–3rd Edition– Cassimeris/Lingappa/Plopper–Johns&BartlettPublishers
- Biologyof Cancer byRobert.A.Weinberg.2ndedition.
- Cooper, G.M. and Hausman, R.E. (2009). The Cell: A Molecular Approach. VEdition. ASM Press and Sunderland, Washington, D.C.; Sinauer Associates, MA.
- Bruce Albert, Bray Dennis, Levis Julian, Raff Martin, Roberts Keith and WatsonJames (2008). Molecular Biology of the Cell, V Edition, Garland publishing Inc., NewYork and London.

Major 501P: Cell Biology

Credits: 01

- 1. Cytological preparation of Meiotic stages from short horned Grasshopper Testis.
- 2. Preparation of permanent slide to show the presence of Barr body in human female blood cells/cheek cells.
- 3. Mitochondria identification through vital staining

Major 502: Molecular Biology

Credits: 04

Credits: 03

Major 502T: Molecular Biology

Course objectives and expected outcome

The course will elucidate the fundamentals of genetics and Mendelian laws, the concept of alleles, and the idea of linkage and crossing over of genes. It will provide an avenue for becoming familiar with various types of genetic data (genotyping, expression, and sequence data), chromosomal mapping, the genetic composition of biological populations, and evolutionary factors that elucidate variation. In-depth knowledge of chemical and molecular processes between cells, including the central dogma, will be ensured by the end of this course.

Sl. No.	Topics	Allotted Lecture
1.	Unit1: Nucleic Acids Salient features of DNA and RNA. Watson and Crick Model of DNA	4
2.	Unit2: DNA Replication Mechanism of DNA Replication in Prokaryotes and eukaryotes, Semi- conservative, bidirectional and discontinuous Replication, RNA priming, Replication of telomeres, Unit of replication, enzymes involved, replication origin and replication fork, fidelity of replication, extrachromosomal replicons, DNA damage and repair mechanisms, homologous and site-specific recombination.	9
3.	Unit3: Transcription Mechanism of Transcription in prokaryotes and eukaryotes, Transcription factors, formation of initiation complex, transcription activator and repressor, RNA polymerases, capping, elongation, and termination, RNA processing, RNA editing, splicing, and polyadenylation, structure and function of different types of RNA, RNA transport, Difference between prokaryotic and eukaryotic transcription.	9
4.	Unit4: Translation Mechanism of protein synthesis in prokaryotes, Ribosome structure and assembly in prokaryotes, Ribosome, formation of initiation complex, initiation factors and their regulation, elongation and elongation factors, termination, aminoacylation of tRNA, tRNA- identity, aminoacyl tRNA synthetase, and translational proof-reading, translational inhibitors, Post- translational modification of proteins fidelity of protein synthesis, charging of tRNA; genetic code, Degeneracy of the genetic code and Wobble Hypothesis; Inhibitors of protein synthesis; Difference between prokaryotic and eukaryotic translation	10
5.	Unit5: Post Transcriptional Modifications and Processing of Eukaryotic RNA Capping and PolyA tail formation in mRNA; Split genes: concept of introns and exons, splicing mechanism, alternative splicing, exon	5

	shuffling, and RNA editing, Processing of tRNA	
6.	Unit6: Gene Regulation Regulation of Transcription in prokaryotes: <i>lac</i> operon and <i>trp</i> operon; Regulation of Transcription in eukaryotes: Activators, enhancers, silencer, repressors, miRNA mediated gene silencing, Genetic imprinting	4
7.	Unit7: DNA Repair Mechanisms Types of DNA repair mechanisms, RecBCD model in prokaryotes, nucleotide and base excision repair, SOS repair	4
Suggest	ted Readings: Molecular Cell Biology by Harvey Lodish. 7 th Edition. W.H.Freeman.	
> M > i I	Molecular Biology of the Gene by Watson.7 th Edition.Pearson. Genetics: A Molecular Approach by Peter. J. Russell.3 rd edition.Pear Benjamin Cummings.	rson

Major 502P: Molecular Biology

Credits: 01

- 1. Preparation of Salivary gland polytene chromosome from *Drosophila melanogaster*
- 2. Isolation & purification of DNA from tissue.
- 3. Principle & method of Agarose Gel Electrophoresis.

Major 503: Biochemistry

Credits: 04

Credits: 03

Major 503T: Biochemistry

Course objectives and expected outcome

The course aims to provide students with a basic understanding of molecular architecture of eukaryotic cells and organelles, including membrane structure and dynamics, principles of bioenergetics and enzyme catalysis, chemical nature of biological macromolecules, their three-dimensional construction, and the principles of molecular recognition, metabolism of dietary and endogenous carbohydrate, lipid, and protein; how inherited genetic errors can cause both single gene and multifactorial diseases and the consequences of this inheritance for individuals and populations. **Course Contents:**

Sl. No.	Topics	Allotted Lecture
<u>Sl. No.</u> 1. 2.	TopicsUnit 1: Carbohydrates• Structure and Biological importance: Monosaccharides, Disaccharides, Polysaccharides; Derivatives of Monosaccharides• Carbohydrate metabolism: Glycolysis, Citric acid cycle, Pentose phosphate pathway, GluconeogenesisUnit 2: Lipids• Structure and Significance: Physiologically important saturated and unsaturated fatty acids, Tri aculalwarralsPhospholipidsSphingolipid	Allotted Lecture 10
	 Glycolipids, Steroids, Eicosanoids and terpinoids. Lipid metabolism: β-oxidation of fatty acids; Fatty acid biosynthesis 	
3.	 Unit 3: Proteins Amino acid: Structure, Classification, General and Electro chemical properties of α-amino acids; Physiological importance of essential and non-essential amino acids Proteins: Bonds stabilizing protein structure; Levels of organization Protein metabolism: Transamination, Deamination, Urea cycle, Fate of C-skeleton of Glucogenic and Ketogenic amino acids 	10
4.	 Unit 4: Nucleic Acids Structure: Purines and pyrimidines, Nucleosides, Nucleotides, Nucleic acids Types of DNA and RNA, Complementarity of DNA, Hpyo- Hyperchromaticity of DNA Basic concept of nucleotide metabolism 	6
5.	Unit 5: Enzymes	8

	Nomenclature and classification; Cofactors; Specificity of enzyme action; Isozymes; Mechanism of enzyme action; Enzyme kinetics; Derivation of Michaelis-Menten equation, Lineweaver-Burk plot; Factors affecting rate of enzyme-catalyzed reactions; Enzyme inhibition; Allosteric enzymes and their kinetics: Strategy of enzyme	
	action- Catalytic and Regulatory (Basic concept with one example each)	
6.	Unit 5: Oxidative Phosphorylation	5
	Redox systems; Review of mitochondrial respiratory	
	chain, Inhibitors and un-couplers of Electron Transport	
	System	
Sugge	sted Readings:	
1.	Cox, M.M and Nelson, D.L. (2008). Lehninger's Principles Biochemistry, V Edition, W.H. Freeman and Co., New York	of «.
2.	Berg, J.M., Tymoczko, J.L. and Stryer, L. (2007). Biochemi Edition, W.H. Freeman and Co., New York.	stry, VI
3.	Murray, R.K., Bender, D.A., Botham, K.M., Kennelly, P.J., V.W. and Well, P.A.(2009). Harper's Illustrated Biochemist Edition, International Edition, The McGraw-Hill Compani	Rodwell, rry, XXVIII es Inc.
4.	Hames, B.D. and Hooper, N.M. (2000). Instant Notes in Biochemistry II Edition BIOS Scientific Publishers Ltd. LL	K
5.	Watson, J.D., Baker, T.A., Bell, S.P., Gann, A., Levine, M. R. (2008). Molecular Biology of the Gene, VI Edition, Cold Harbor Lab. Press, Pearson Pub.	and Losick, Spring

Major 503P: Biochemistry

- 1. Qualitative tests of functional groups in carbohydrates, proteins and lipids.
- 2. Quantitative estimation of Lowry Methods.
- 3. Demonstration of proteins separation by SDS-PAGE.
- 4. To study the enzymatic activity of Trypsin and Lipase.
- 5. To perform the Acid and Alkaline phosphatase assay from serum/ tissue.

Major 504: Endocrinology

Major 504T: Endocrinology

Course objectives and expected outcome

Students should be able to demonstrate/illustrate how the homeostatic model applies to every endocrine system in normal physiology and disease, how every aspect of our physiology and behavior is directly controlled or modified by hormones using reproduction, growth, development, stress, and metabolism as examples, how endocrine systems can be disrupted with respect to synthesis, knowing about chemical communication process in our body

Course Contents:

Sl. No.	Topics	Allotted Lecture
1.		10
	Unit-1: Introduction to Endocrinology	
	General idea of Endocrine systems, types of gland,	
	Classification, Characteristic and Transport of	
	Hormones, Neurosecretions and Neurohormones	
2.	Unit-2: Epiphysis, Hypothalamo-hypophysial Axis	10
	Structure of pineal gland, Secretions and their functions in	
	biological rhythms and reproduction. Structure and	
	functions of hypothalamus and Hypothalamic	
	nuclei, Regulation of neuroendocrine glands, Feedback	
	mechanisms Structure of pituitary gland, Hormones and their	
	functions, Hypothalamo-hypophysial portal system,	
	Disorders of pituitary gland.	
3.	Unit-3: Peripheral Endocrine Glands	10
	Structure, Hormones, Functions and Regulation of Thyroid	
	gland, Parathyroid, Thymus, Adrenal, Pancreas, Ovary and	
	Testis. Hormones in homeostasis, Disorders of endocrine	
	glands	
4.	Unit-4: Regulation of Hormone Action	10
	Mechanism of action of steroidal, non-steroidal hormones	
	with receptors. Bioassays of hormones using RIA & ELISA.	

Credits: 04

	Estrous cycle in rat and menstrual cycle in human.			
	Multifaceted role of Vasopressin & Oxytocin. Hormonal			
	regulation of parturition.			
Suggested Readings:				

- 1. Guyton and Hall. Textbook of Medical Physiology. 13th Edition
- 2. Histology: A Text and Atlas. Sixth Edition. Ross & Pawlina. Lippincott Williams & Wilkins.
- 3. Vertebrate Endocrinology by David O. Norris,

Major 504P: Endocrinology

Credits: 01

- 1. Dissect and display of pituitary gland of fish.
- 2. Study of the permanent slides of all the endocrine glands
- 3. Tissue fixation, embedding in paraffin, microtomy and slide preparation of any endocrine gland
- 4. Estimation of plasma level of any hormone using ELISA.
- 5. Designing of primers of any hormone.

Minor 501: Parasitology

Minor 501 T: Parasitology

Course objectives and expected outcome:

The course will provide an understanding of the diversity and biology of parasites, besides the epidemiological aspects of different parasitic diseases will be explored and students will be able to gain knowledge regarding the mode of transmission of parasitic diseases and its preventive measures.

Course Contents:

Sl. N	o. Topics	Allotted				
		Lecture				
1.	Unit 1: Introduction to Parasitology Types of parasites and hosts. The basic concept of Parasitism: Commensalism, Symbiosis, Phoresis, Mutualism, Predation, Carrier and Vectors. Host parasitic interactions	10				
2.	Unit 2: Parasitic Protists -Study of Morphology, Life Cycle, Prevalence, Epidemiology, Pathogenicity, Diagnosis, Prophylaxis and Treatment of <i>Plasmodium vivax, Trypanosoma gambiense,</i> <i>Leishmania donovani</i>	6				
3.	Unit 3: Parasitic Platyhelminthes -Study of Morphology, Life Cycle, Prevalence, Epidemology, Pathogenicity, Diagnosis, Prophylaxis and Treatment of, <i>Diphyllobothrium latum</i> , <i>Taenia</i> <i>solium</i>	5				
4.	Unit 4: Parasitic Nematodes Study of Morphology, Life Cycle, Prevalence, Epidemology, Pathogenicity, Diagnosis, Prophylaxis and Treatment of <i>Ascaris</i> <i>lumbricoides, Brugia malayi</i> and <i>Loa loa</i> ; Nematode Plant interaction; Gall formation.	7				
5.	Unit 5: Parasitic ArthropodsBiology, importance and control of ticks (Soft tick Ornithodoros,Hard tick Ixodes), mites (Sarcoptes), Lice(Pediculus),Flea(Xenopsylla) and Bug (Cimex)	10				
6.	Unit 6: Zoonotic disease (with special reference to) Wuchereria bancrofti , Schistosoma haematobium, Paragonimus westermani. Giardia intestinalis	7				
Sugges	sted Readings:	•				
\checkmark	Arora, D. R and Arora, B. (2001) Medical Parasitology. II Edition. CBS P	Publications				
	and Distributors					
~	E.R Noble and G.A. Noble(1982) Parasitology: The biology of animal pa Edition, Lea & Febiger	arasites, V				
\succ	Ahmed, N., Dawson, M., Smith, C. and Wood, Ed, (2007) Biology of Disease					

Credits: 04

- Taylor and Francis Group
- Parija, S. C. Textbook of medical parasitology, protozoology & helminthology(Text and colour Atlas), II Edition, All India Publishers & Distributers, Medical Books Publishers, Chennai, Delhi
- Rattan Lal Ichhpujani and Rajesh Bhatia. Medical Parasitology,III Edition ,Jaypee Brothers Medical Publishers(P) Ltd.,New Delhi.
- Page66Meyer, Olsen & Schmidt's Essestials of Parasitology, Murray, D.Dailey, W.C. Brown Publishers.
- K. D. Chatterjee(2009). Parasitology:Protozoology and Helminthology. XIII Edition, CBS Publishers & Distributors (P) Ltd.

Minor 501 P: Parasitology

Credits: 01

Course Contents:

1. Study of life stages of *Giardia intestinalis*, *Trypanosoma gambiense*, *Leishmania donovani*, *Plasmodium* sp. through permanent slides / photographic plate.

2. Study of adult and life stages of *Schistosoma haematobium*, through permanent slides/ photographic plate.

5. Identification: Pediculous sp., Xenopsylla sp., Cimex sp. Ascaris sp., Taenia sp.

6. Study of nematode/cestode parasites from the intestines of Cockroach

RAJA NARENDRALAL KHAN WOMEN'S COLLEGE (AUTONOMOUS)

Semester-VI Course Structure

Sl.	Name of the Courses	No. of	Credits	Full
No.		Papers		Marks
1	Major	04	16(4x4)	300(75x4)
2	Minor	01	04	75
3	Summer Internship	01	02	50
	Total	06	22	425

Raja N. L. Khan Women's College (Autonomous)

Curriculum for Undergraduate in Zoology

[NEP 2020]

Semester-VI

]	Feach	ing		Marks
Paper Code	Name of the Subject	Nature	Scheme in hour per week		Credit		
			L	Т	Р		
ZOOMJ601	MJ601T: Genetics	Major Course	3	0	0	4	75
	MJ601P: Genetics (Practical)	Major Cource	0	0	1		
ZOOMJ602	MJ602T: Immunology	Major Cource	3	0	0	4	75
	MJ602P: Immunology (Practical)	Major Cource	0	0	1		
ZOOMJ603	MJ603T: Developmental Biology	Major Cource	3	0	0	4	75
	MJ603P: Developmental Biology (Practical)	Major Cource	0	0	1		
ZOOMJ604	MJ604T: Evolution	Major Cource	3	0	0	4	75
	MJ604P: Evolution (Practical)	Major Cource	0	0	1		
	MI601T: Parasitology	Minor Course	3	0	0		75
ZOOMI601	MI601P: Parasitology (Practical)	Minor Course [Practical]	0	0	1	4	

L=Lecture, T=Tutorial, P=Practical

Major 601: Genetics

Major 601T: Genetics

Course objectives and expected outcome

This course aims to offer an overview of genetics starting from inheritance biology to the current understanding of various phenomena like crossing over, recombination, sex determination, mutations and transposition. In addition, fathoming the microbial genetics has been prioritized in this syllabus. So, the course infiltrated with dynamic areas will assist in developing sound fundamental knowledge of the principles of genetics, to be used as a steppingstone for higher studies and research in this field.

Course Contents:

Genetics

Sl. No.	Topics	Allotted Lecture
	Unit 1: Mendelism and its Extension	
1.	Basic principles of heredity: Mendel's laws, monohybrid and dihybrid	8
	crosses; Incomplete dominance and co-dominance; Epistasis; Multiple	
	alleles, Isoallele, Pseudoallele, Lethal alleles; Pleiotropy; Penetrance &	
	Expressivity; Sex-linked, sex-influenced and sex-limited inheritance;	
	Polygenic inheritance.	
2.	Unit 2: Linkage, Crossing Over and Chromosomal Mapping	
	Linkage: Complete & incomplete Linkage; Crossing over: molecular basis;	8
	Measuring Recombination frequency and linkage map construction using	
	three factor crosses; Interference and Coincidence.	
3.	Unit 3: Sex Determination	_
	Genetic basis of sex-determining Systems; Mechanism sex determination in	6
	Drosophila melanogaster; Sex determination in human; Dosage	
	compensation in Drosophila and Human.	
4.	Unit 4: Mutations	
	Types of gene mutations; Categories of chromosomal aberrations; Non-	8
	disjunction and variation in chromosome number; Different chromosomal	
	disorders in human: Turner's syndrome, Klinefelter's syndrome, Down	
	syndrome, Cri-du-Chat syndrome; Molecular basis of mutations in relation to	
	UV light and chemical mutagens.	

5	Unit 5: Extra-chromosomal inheritance	4
	Criteria for extra-chromosomal inheritance; Maternal effects: coiling in snail	
	shells; Infective heredity: kappa particles in Paramecium.	
6	Unit 6: Transposable Genetic Elements	4
	Transposons in bacteria; Ac-Ds elements in maize; P elements in Drosophila;	
	Retrotransposons; LINE, SINE and Alu elements in human.	
7	Unit 7: Microbial Genetics	5
	Bacterial genetic elements: types and structural organization; Recombination	
	in bacteria and gene mapping; Transformation; Conjugation; Transduction	
	(Generalized and Specialized); Complementation tests; General principles	
	and genetics of bacteriophage (T4 and Lambda phage): structure, genome	
	organization and life cycle (lytic and lysogenic).	
Sugge	sted Readings:	
\succ	Snustad, D.P. and Simmons, M.J. (2009). Principles of Genetics, 5 th Edition. Jo	hn Wiley
	and Sons Inc.	
\succ	Russel, P.J. (2010). iGenetics: A Molecular Approach. Pearson Benjamin.	
\succ	Watson, J.D. (2014). Molecular Biology of the gene, 7th Edition, Pearson.	
\succ	Klug, W.S., Cummings, M.R. and Spencer, C.A. (2012). Concepts of Genet	tics, 10th
	Edition. Benjamin Cummings	
\succ	Krebs, J.E., Goldstein E.S. and Kilpatrick S.T. (2009). Lewins's Genes X, 10th	^h Edition.
	Jones and Bartlett.	
\checkmark	Gupta, P.K. (2007). Genetics: Classical To Modern. Rastogi Publications, Meeru	ıt.

Major 601P: Genetics

Credits: 01

- 1. Verification of Mendelian Ratio using Chi square analyses.
- 2. Preparation of Linkage Maps based on conjugation.
- 3. Pedigree analysis of some human inherited traits.
- 4. Preparation of human karyotype and study the chromosomal aberrations with respect to number, translocation, deletion etc. from the pictures provided.
- 5. Study of mutant phenotypes of Drosophila from photograph.

Credits: 04

Credits: 03

Major 602T: Immunology

Course objectives and expected outcome

At the end of this course students will be able to know about our defense system, which are working throughout the clock and trying to make us healthy and free from the infections of pathogens. At the same time, they will be able to understand how disease occurs in an organism and its curing process or its preventive measures with the help of vaccination for better tomorrow.

Sl. No.	Topics	Allotted
1.		<u> </u>
	Unit 1: Overview of Immune System: Basic concepts of health	5
	and diseases, Historical perspective of Immunology, Cells and	
	organs of the Immune system	
2.	Unit2: Innate and Adaptive Immunity: Anatomical barriers,	5
	Inflammation, Cell and molecules involved in innate immunity,	
	Adaptive immunity (Cell mediated and Humoral).	
3.	Unit 3: Antigens: Antigenicity and immunogenicity	5
	Immunogens Adjuvants and Hantens Eactors influencing	
	immunogenicity R and T Call apitopes	
	minunogementy, B and 1-Cen epitopes	
4.	Unit 4: Immunoglobulins: Structure and functions of different	8
	classes of immunoglobulins, Antigen-antibody interactions,	
	Immunoassays (ELISA and RIA), Hybridoma technology,	
	Monoclonal antibody production	
5.	Unit 5: Major Histocompatibility Complex: Structure, Types	5
	and functions of MHC molecules. Structure of T cell Receptor	
	and its signalling, Tcell development & selection, Autoimmune	
	disease	
6.	Unit 6: Cytokines: Types, properties and functions of cytokines.	2

7.	Unit7: Complement System: Components and pathways of complement activation.	4			
8.	Unit 8: Hypersensitivity	3			
	Gelland Coombs' classification and brief description of various				
	types of hypersensitivities.				
9.	Unit 9: Immunology of diseases	5			
	Malaria, Filariasis, Dengue and Tuberculosis				
10.	Unit 10: Vaccines	3			
	Various types of vaccines. Active& passive immunization				
	(Artificial and natural).				
Suggested Readings:					
\triangleright	Kindt, T. J., Goldsby, R.A., Osborne, B.A. and Kuby, J(2006). Immunole	ogy,			
~	Abbas, K. Abul and Lechtman H. Andrew(2003.) Cellular and Molecular Immunology. V Edition. Saunders Publication.				

Major 602P: Immunology

Course contents:

- 1. Demonstration of lymphoid organs.
- 2. Histological study of spleen, thymus and lymph nodes through slides/photographs
- 3. Preparation of stained blood film to study various types of blood cells.
- 4. Study the macrophage from Rat/Pigeon
- 5. ABO blood group determination.
- 6. Demonstration of ELISA

Major 603: Developmental Biology

Credits: 04

Credits: 03

Major 603T: Developmental Biology

Course objectives and expected outcome

The goal of this course is to provide a thorough understanding of the ideas of early animal development. This course requires students to gain critical awareness for approaches used to research embryonic development in animals. Different aspects of animal development will be explored in one model system or another. After teaching the topics, students will learn about several techniques to studying them. Topics to be covered include stem cell regeneration, disease development, and evolutionary change mechanisms.

Course Contents:

Sl. No.	Topics	Allotted		
		Lecture		
1.	Unit 1: Introduction to Developmental Biology	5		
	Basic concepts: Phases of Development, Cell-cell interaction,			
	Differentiation and growth, Cytoplasmic Determinants and gene			
	expression, Biogenetic law/ Recapitulation theory			
2.	Unit 2: Early Embryonic Development	10		
	Outline knowledge of gametogenesis; ultrastructure of sperm and			
	ovum; Types of eggs, Egg membranes; physical and molecular			
	events of Fertilization in sea urchin and mammals.			
3.	Unit 3: Early Embryonic Development	10		
	Cleavage- types, role of yolk in cleavage. Formation of blastula in			
	chick. Fate map, morphogenetic movement and process of			
	gastrulation in chick.			
	Embryonic induction and organizer concept.			
4.	Unit 3: Late Embryonic Development	6		
	Fate of Germ Layers; Formation and functions of Extra-embryonic			
	membranes in Chick; Implantation of embryo in humans, Placenta			
	(Structure, types and functions of placenta), Implantation			
	abnormalities			
5.	Unit 4: Post Embryonic Development	7		
	Development of brain and Eye in Chick. Regeneration: Modes of			
	regeneration, epimorphosis, morphallaxis and compensatory			
	regeneration			
6.	Unit 5: Implications of Developmental Biology	7		
	Teratogenesis: Teratogenic agents and their effects on embryonic			
	development, In vitro fertilization (IVF) and embryo transfer, Stem			
	cell: Concept of potency, types, markers and applications of stem			
	cell therapy, Amniocentesis			
G (1				
Suggesteu Keaungs:				
➢ Gilbert S.F. 2010. Developmental Biology, IX Edition, Sinauer Associates, Inc.,				

Publishers

Verma PS, Agarwal VK. 2014. Chordate Embryology: Developmental Biology. S. Chand Pub.

- Chaki K C; Kundu G & Sarkar S. Introduction to General Zoology; Vol. 1, NCBA, Kolkata
- Slack JMW. 2012. Essential Developmental Biology. Wiley-Blackwell

Major 603P: Developmental Biology

Credits: 01

1. Study of whole mounts of developmental stages of chick embryo through permanent slides: 24, 48, 72 and 96 hours of incubation

- 2. Identification of slide of placenta.
- 3. Study the developmental stages of Drosophila.

Credits: 04

Major 604T: Evolution

Credits: 03

Course objectives and expected outcome

The curriculum in evolution includes modern aspects of evolution and molecular phylogenetic trees. DNA and amino acid sequences are studied by genomics and proteomics data analysis and find out the similarities and dissimilarities between different species of the same or diverse group. By nearest neighbor analysis and by the principle of parsimony, a gene tree could be made. Students benefit from the study of genome analysis and by finding the sequences; they may be able to find out the molecular systematic position.

SI.	Topics	Allotted
1.	Unit-1: Life's Beginnings: Chemogeny, RNA world, Biogeny, Origin of photosynthesis, volution of eukaryotes.	4
2.	Unit-2: History of evolutionary concept, Lamarkism, Darwinism and Neo Darwinism.	5
3.	Unit-3: Geological time scale, Fossil records of Hominids (from <i>Australopithacus</i> to <i>Homo sapiens</i>), evolution of horse. Neutral theory of molecular evolution, Molecular clock.	6
4.	Unit-4: Sources of variations: Heritable variations and their role in evolution.	4
5.	Unit-5: Population genetics: Hardy-Weinberg Law (statement and derivation of equation, application of law to biallelic Population); Evolutionary forces upsetting H-W equilibrium; Natural selection (concept of fitness, types of selection, selection coefficient, mode of selection heterozygous superiority). Genetic Drift mechanism (founder's effect, bottleneck phenomenon). Role of Migration and Mutation in changing allele frequencies.	9
6.	Unit-6: Species concept, Isolating mechanisms, modes of speciation. Adaptive radiation /Macroevolution (exemplified by Galapagos finches).	4
7.	Unit-7: Extinctions, Background, and mass extinctions (causes and effects), detailed example of K-T extinction.	4
8.	Unit-8: Phylogenetic trees, Construction & interpretation of Phylogenetic tree using parsimony, Convergent & Divergent evolution.	4
9.	Unit-9: Origin and Evolution of Man, Unique Hominin characteristics contrasted with primate characteristic Molecular analysis of human origin.	5
S	 Campbell, N. A. and Reece J. B (2011). Biology. IXE dition. Pearson, Benjamin, Cummings. 	

> Douglas, J. Futuyma (1997). Evolutionary Biology. Sinauer Associates.

➢ Geneics: A Molecular Approach. 3rdedition. Peter. J. Russell.

Major 604P: Evolution

Credits: 01

- 1. Study of fossils from models/pictures
- 2. Study of homology and analogy from suitable specimens
- 3. Study of Hardy-Weinberg Law by chi square analysis.
- 4. Studies of Phylogenetic tree to show the relationship between different phyla
- 5. Field visit to any National Park to study the adaptive modification of animal.

Minor 601 T: Parasitology

Course objectives and expected outcome:

The course will provide an understanding of the diversity and biology of parasites, besides the epidemiological aspects of different parasitic diseases will be explored and students will be able to gain knowledge regarding the mode of transmission of parasitic diseases and its preventive measures.

Course Contents:

Sl. No.	Topics	Allotted			
		Lecture			
1.	Unit 1: Introduction to Parasitology	10			
	Types of parasites and hosts. The basic concept of Parasitism:				
	Commensalism, Symbiosis, Phoresis, Mutualism, Predation,				
	Carrier and Vectors. Host parasitic interactions				
2.	Unit 2: Parasitic Protists -Study of Morphology, Life Cycle,	6			
	Prevalence, Epidemiology, Pathogenicity, Diagnosis, Prophylaxis				
	and Treatment of Plasmoalum vivax, Trypanosoma gambiense, Leishmania donovani				
3.	Unit 3: Parasitic Platyhelminthes -Study of Morphology, Life	5			
	Prophylaxis and Treatment of <i>Diphyllobothrium latum Tagnia</i>				
	solium				
1	Unit 1. Parasitic Nomatodos	7			
7.	Study of Morphology, Life Cycle, Prevalence, Epidemology,	7			
	Pathogenicity, Diagnosis, Prophylaxis and Treatment of Ascaris				
	lumbricoides, Brugia malayi and Loa loa; Nematode Plant				
	interaction; Gall formation.				
5.	Unit 5: Parasitic Arthropods	10			
	Biology, importance and control of ticks (Soft tick Ornithodoros,				
	Hard tick <i>Ixodes</i>), mites (<i>Sarcoptes</i>), Lice(<i>Pediculus</i>),				
	Flea(<i>Xenopsylla</i>) and Bug (<i>Cimex</i>)	-			
6.	Unit 6: Zoonotic disease (with special reference to)	7			
	westermani Giardia intestinalis				
Suggested Readings:					
Arora, D. R and Arora,B.(2001) Medical Parasitology.II Edition. CBS Publications					
and Distributors					
≻ E.R	E.R Noble and G.A. Noble(1982) Parasitology: The biology of animal parasites, V				
Edition, Lea & Febiger					
> Ahm	Ahmed, N., Dawson, M., Smith, C. and Wood, Ed, (2007) Biology of Disease				
Tayl	Taylor and Francis Group				

Credits: 04

- Parija, S. C. Textbook of medical parasitology, protozoology & helminthology(Text and colour Atlas), II Edition, All India Publishers & Distributers, Medical Books Publishers, Chennai, Delhi
- Rattan Lal Ichhpujani and Rajesh Bhatia. Medical Parasitology,III Edition ,Jaypee Brothers Medical Publishers(P) Ltd.,New Delhi.
- Page66Meyer, Olsen & Schmidt's Essestials of Parasitology, Murray, D.Dailey, W.C. Brown Publishers.
- K. D. Chatterjee(2009). Parasitology:Protozoology and Helminthology. XIII Edition, CBS Publishers & Distributors (P) Ltd.

Minor 601 P: Parasitology

Credits: 01

Course Contents:

1. Study of life stages of *Giardia intestinalis*, *Trypanosoma gambiense*, *Leishmania donovani*, *Plasmodium* sp. through permanent slides / photographic plate.

2. Study of adult and life stages of *Schistosoma haematobium*, through permanent slides/ photographic plate.

5. Identification: Pediculous sp., Xenopsylla sp., Cimex sp. Ascaris sp., Taenia sp.

6. Study of nematode/cestode parasites from the intestines of Cockroach

RAJA NARENDRALAL KHAN WOMEN'S COLLEGE (AUTONOMOUS)

Semester-VII Course Structure

Sl.	Name of the Courses	No. of	Credits	Full
No.		Papers		Marks
1	Major	04	16(4x4)	300(75x4)
2	Minor	01	04	75
Total		05	20	375

Raja N. L. Khan Women's College (Autonomous)

Curriculum for Undergraduate in Zoology

[NEP 2020]

Semester-VII

			Teaching		Teachin			Marks
Paper Code	Name of the Subject	Nature	Scheme in hour per week		Credit			
			L	Т	Р			
ZOOMJ701	MJ701T: Animal Behavior	Major Course	3	0	0	4	75	
	MJ701P: Animal Behavior (Practical)	Major Cource	0	0	1			
ZOOMJ702	MJ702T: Computational Biology	Major Cource	3	0	0	4	75	
	MJ702P: Computational Biology (Practical)	Major Cource	0	0	1			
ZOOMJ703	MJ703T: Biophysics	Major Cource	3	0	0	4	75	
	MJ703P: Biophysics (Practical)	Major Cource	0	0	1			
ZOOMJ704	MJ704T: Microbiology	Major Cource	3	0	0	4	75	
	MJ704P: Microbiology (Practical)	Major Cource	0	0	1			
	MI701T: Animal Behaviour	Minor Course	3	0	0		75	
ZOOMI701	MI701T: Animal Behaviour (Practical)	Minor Course [Practical]	0	0	1	4		

Major 701: Animal Behaviour

Major 701T: Animal Behaviour

Course objectives and expected outcome

This course will introduce you to animal behaviour research and its (very recent) history. We shall investigate the origins (ultimate cause) of behaviour, its role in an animal's survival and reproduction, and how behaviours evolve across evolutionary time. We will explore the evolution of benevolence, reproductive behaviour and communication. We will also discuss how animals choose foraging strategies, avoid predators, find suitable territories, and decide to migrate. The topic of behavioural research in zoos and its importance in species conservation will be examined. The course also covers the proximate reasons of behaviour, what drives behaviour, and the importance of ontogeny (organismal development). Although the basis of conduct lies in neurobiology and the brain, these will not be explored in length in this course. We will talk about the role of memory and learning in animal behaviour.

Sl. No.	Topics				
1.	Unit I-Concept of Ethology	7			
	• Introduction - Origin & history of Ethology				
	Brief profiles of Karl von Frish Ivan Paylov Konard				
	Lorenz. Niko Tinbergen.				
	Mechanism of Behaviour, Proximate & ultimate causes				
	of behaviour. Stimulus, Releaser & Sign Stimulus.				
2.	Unit 2 - Classification of behavioural Patterns	13			
	• Behavioural Patterns: Stereotyped Behaviours, FAP,				
	acquired behaviour, Instinct vs Learnt Behaviour,				
	Associative learning, classical and operant				
	Conditioning, Habituation, Imprinting, Conflict				
	behaviours.				
3.	Unit 3. Social behaviour obstacles solving ecological	14			
	behaviour, reproductive behaviour				
	 Social behaviour, Concept of society. 				
	• Communication and the senses. Ritualization, Signals,				
	Altruism, Insect society with honey bee as example,				
	Foraging in honey bee and advantages of the waggle				
	dance.				
	• Foraging behaviour -(Finding food, selecting food,				
	capturing food, consuming food) Territorial behaviours,				
	Antipredatory behaviours, Aggressive behaviours, Play				
	behaviours.				
	• Reproductive behaviour - Asymmetry of sex Sexual				
	dimorphism, Male Choice, Inter sexual selection (male				
	rivalry), Intra sexual selection (temale choice),				
	Diversity in mating system. Courtship behaviour,				
	Parental care, Problems of offspring recognition,				
	ethogram.				

Credits: 04
4.	Unit 4 - Introduction to Chronobiology	5
	Historical developments in Chronobiology Biological	
	oscillation: the concept of Average, amplitude, phase	
	and period, adaptive significance of biological clocks.	
5.	Unit 5: Biological Rhythm	6
	Types and characteristics of biological rhythms: short and long	
	term rhythms, Circadian rhythms Tidal rhythms and Lunar	
	rhythms, concept of synchronization and masking, Photic and	
	non-photic zeitgebers, Circannual rhythms, Photo period and	
	regulation of seasonal reproduction of vertebrates, Role of	
	melatonin, many behaviours in animals are rhythmic in nature.	
Sugg Anin John Paul Asso Chro J. De USA Insec (3rdH Biolo Sprir	ested Readings: nal Behaviour by Drickamar. Alcock, Animal Behaviour, Sinauer Associate Inc., USA. W. Sherman and John Alcock, Exploring Animal Behaviour, Sinauciate Inc., Massachusetts, USA. nobiology Biological Timekeeping: Jay. C. Dunlap, Jennifer. J. Lor Coursey (ed). 2004, Sinauer Associates, Inc. Publishers, Sunderlan t Clocks D.S. Saunders, C.G.H. Steel, X., Afopoulou (ed.) R.D. Lev Ed) 2002 Barens and Noble Inc. New York, USA ogical Rhythms: Vinod Kumar (2002) Narosa Publishing House, De ger-Verlag, Germany.	er ros Patricia ad, MA, wis. elhi/

Major 701 P: Animal Behaviour

Credits: 01

- 1. To study nests and nesting habits of the birds and social insects.
- 2. To study the behavioural responses of wood lice to dry and humid conditions.
- 3. To study geotaxis behaviour in earthworm.
- 4. To study the phototaxis behaviour in insect larvae.

Major 702: Computational Biology

Major 702T: Computational Biology

Course objectives and expected outcome

By the end of this course, students will have gained a profound understanding of how statistical principles are employed in analyzing biological data. Through an intensive exploration of bioinformatics, genomics, and proteomics, students will develop the ability to apply their knowledge to practical scenarios. Furthermore, they will learn how to validate biological data using statistical methodologies, ensuring the reliability and accuracy of research outcomes.

Course Contents:

SI. No	Topics	Allotted
		Lecture
1.	Unit 1: Introduction to Bioinformatics	7
	Importance, Goal, Scope; Genomics, Transcriptions, System	
	Biology, Functional Genomics, Metabolomics; Application and	
	Limitation of Bioinformatics.	
2.	Unit 2: Biological Databases	7
	Introduction to biological databases; Classification: Primary,	
	secondary and composite databases; Nucleic acid databases	
	(GenBank, DDBJ, EMBL); Protein databases (PIR,SWISS-PROT,	
	TrEMBL, PDB); Metabolic pathway database (KEGG, EcoCyc, and	
	MetaCyc).	_
3.	Unit 3: Data Generation and Data Retrieval	7
	Generation of data (DNA sequence, Protein sequencing, Mass	
	spectrometry, Microarray), Sequence submission tools (e.g. Banklt,	
	Sequin, Webin); Sequence file format (e.g. FASTA, Clustal, Swiss-	
	Prot); Sequence annotation; Data retrieval system (SRS, Entrez).	
4.	Unit 4: Basic Concepts of Sequence Alignment	1
	Scoring Matrices (PAM, BLOSUM), Methods of Alignment	
	(BLASI); Local and global alignment, pair wise and multiple	
	sequence angliments; Similarity, Identity and homology of	
5	Sequences.	7
5.	Structural Bioinformatics (3 D protain DDB) Functional genomics	/
	(genome wide and high throughput approaches to gene and protein	
	(genome-while and high throughput approaches to gene and protein function). Drug discovery method (Basic concept)	
6	Unit 6: Biostatistics	10
0.	• Introduction: Sample and population Variables:	10
	Classification: Sampling techniques	
	 Measurement of central tendencies: mean mode median 	
	 Measurement of dispersion: types calculation of standard 	
	deviation standard error Co-efficient of Variance Kurtosis	
	and skewness	
	 Probability and Probability distribution: I aws of probability 	
	normal distribution. Binomial and Poison distribution	
	• Parametric and non-parametric tests. Chi-square test 7-test	
	• Talametre and non-parametre tests.em-square test, Z-test,	

Credits: 04

Credits: 03

	 t-test Correlation and regression: correlation coefficient and types/ models of regression ANOVA: overview, models 			
Sugge	sted Readings:			
► D	niel (1999). Biostatistics (3rd edition) Panima Publishing Corporation.			
> K	an (1999). Fundamentals of Biostatistics, Panima Publishing Corporation	L		
≻ Sv	Swardlaw, A.C. (1985). Practical Statistics for Experimental Biologists, Joh			
> Ba	zin, M.J. (1983). Mathematics in microbiology Academic press			
> Ca	mpbell, R.C. (1974). Statistics for Biologists, Cambridge Univ. Press, Car	mbridge		
> Bl	iss, C.I.K. (1967). Statistics in Biology, Vol.1 Mc Graw Hill, New York.	-		
> D	ananjaya (2002). Introduction to Bioinformatics, www.sd-bio.com series	2. Jan		
(2	001). Nucleic acid research, Genome Database issue			
> H	ggins & Taylor (2000). Bioinformatics, OUP.			
> Ba	xavanis (1998). Bioinformatics.			
≻ Fr	y, J.C. (1993). Biological Data Analysis. A practical Approach. IRL Press	, Oxford.		

Major 702P: Computational Biology

Credits: 01

- 1. Operation Microsoft word, Microsoft excel, Microsoft Power Point and Internet.
- 2. Preparation of graph of experimental data using MS Excel/software.
- 3. Computation of mean, median, mode, SD, SE, correlation coefficient, regression and ANOVA using available software.
- 4. Database searching, pairwise alignment global and local, multiple sequence alignment, construction of phylogenetic tree, evaluation of secondary structure of protein, homology modelling

Major 703: Biophysics

Credits: 04

Major 703T: Biophysics

Credits: 03

Course objectives and expected outcome

The goal of this course is to provide a deep and broad physicochemical basis of common biological phenomena and laboratory methods. After teaching the topics, students will learn about several biophysical properties and techniques to study biophysics. Topics to be covered include properties of matter and solutions, thermodynamics and chemical kinetics, colloidal system, biophysical basis of separation, radioactivity, microscopy, biophysics of membrane and cellular energy currency.

SI. No	Topics			
		Lecture		
1.	Unit 1: Properties of matter and solutions	5		
	Diffusion: Definition, factors, biological applications. Solution:			
	solvent, solute. Osmosis: Definition, van't Hoff laws, Gibbs-Donnan			
	effect, plasmolysis-deplasmolysis, factors, biological applications.			
	pH: definition, biological significance.			
2.	Unit 2: Thermodynamics and chemical kinetics	6		
	Laws of thermodynamics, enthalpy, entropy, Gibbs free energy.			
	Enzymes: properties, Michaelis-Menten equation, enzyme inhibition			
	curves. Ribozymes.			
3.	Unit 3: Colloidal system	5		
	Definition, classification, properties, colloidal solution and true			
	solution, lyophilic and lyophobic sol, adsorption.			
		10		
4.	Unit 4: Biophysical basis of separation / Instrumentation based on	10		
	Ultrafiltration and its biological application Dialysis and its			
	biological applications. Sedimentations emuthrosute sedimentation			
	rate Ultracentrifugation Chromatography and its turage			
	Flootnorphoresist coll clootnorphoresis and SDS DACE Southern			
	bletting northern bletting and western bletting DIA ELISA and			
	trace Eleve extension			
5	Unit 5: Redicectivity	Λ		
5.	Unit 5: Kauloactivity Redicipatence, redicactive deceve, offects of redicactivity on human	4		
	hadios			
6	Unit 6: Migroscony	E		
0.	Properties of light and Beer Lambert law Bright field light	5		
	microscopy Dark ground microscopy/ultramicroscopy Dhase			
	contrast microscony Eluorescence microscony			
7	Unit 7: Bionhysias of mombrane	6		
/•	Micelle and linosome SEM and TEM Membrane transport: non	U		
	Micelle and liposome. SEM and TEM. Membrane transport: non-			

	mediated transport of solutes, gases and water and carrier mediated	
	transport. Membrane potential.	
8.	Unit 8: Cellular energy currency	4
	ATP as energy transducer, substrate level phosphorylation and	
	oxidative phosphorylation.	
Sugges	ted Readings:	
\checkmark	Biophysics and Biophysical Chemistry by Debajyoti Das,	Academic
	Publishers, Kolkata	
\succ	Tools of Biochemistry by Cooper, Terrance G; (Publisher)- New Yor	k: Wiley-
	Interscience	-
\succ	"Biophysics: Tools and Techniques" by J. N. Agarwal	
\succ	"Biological Physics: Energy, Information, Life" by Philip Nelson	
\checkmark	"Biophysics: A Physiological Approach" by Patrick F. Dillon	

Major 703P: Biophysics

Credits: 01

- 1. Estimation of pH of solution by pH meter.
- 2. Demonstration of Chromatographic techniques
- 3. Microscopic study of hypotonic and hypertonic treatment of mammalian erythrocytes.
- 4. Demonstration of phase-contrast and fluorescence microscopy (Live and virtual)

Major 704: Microbiology

Major 704T: Microbiology

Course objectives and expected outcome

The curriculum in microbiology includes historical perspective of microbiology, types of micro-organism, their morphological structures and distribution of normal flora in the body with their beneficial effects. Students will gain knowledge about different microbial pathogenicity, their mode of infection and different microbial disease. Students also know about different staining procedures and bacterial genetics.

SL. No.	Topics	Allotted
		Lecture
1.	Unit1: Introduction to Microbiology	4
	Historical perspective of Microbiology, Prokaryotic pathogens, Eukaryotic pathogens.	
2.	Unit2: Bacterial taxonomy	8
	Principles and modern approaches of bacterial taxonomy. Basic idea	
	up to eight kingdom concept and domain concept of Carl Woose.	
3.	Unit3: Morphology of Bacteria and Virus	8
	Cell wall (Structure of peptidoglycan), Cell envelope (Cell	
	membrane, Differences between gram- positive and gram-negative	
	species, External capsule and glycocalyx, Plasmids and episomes.	
	Nuclear material, Bacterial Chromosome (Fundamental differences	
	with eukaryotic chromosome). Reserve materials (carbon and	
	phosphate reserve, cyanophycin), Cytoplasmic inclusions	
	(Chlorosome, magnetosome, carboxysome, gasvesicles, ribosome).	
	Structural organization of viruses, Prions and viroids.	
4.	Unit5: Pathogenicity of Microorganisms	8
	Bacterial pathogenesis: Entry to the host, Adherence to host cells,	
	Invasiveness, Bacterial toxins: Exotoxins, Endotoxins, Antigenic	
	switching. Viral Pathogenesis: Cellular level (Cell death,	
	Transformation, Cell fusion, Cytopathic effect). Initial infections:	
	Routes of entry and dissemination to secondary sites, Typical	
	secondary sites of localization, Virus shedding and mode of	
	transmission; Factors involved intermination of acute infection.	
5.	Unit6: Infection of pathogens to human populations	2
	Communicable, Non-communicable, Endemic, Epidemic, Pandemic and Sporadic.	

Course Contents:

Credits: 04

Credits: 03

6.		Unit7: Diagnostic Microbiology and Bacteria culture	4		
		Koch's postulates, Sensitivity and specificity of test results,			
		Principles and applications: Simple staining, Gram-staining, Acid-			
		fast staining, Collection of specimens, Growth requirements and			
		Growth factors, Oxygen requirement. Culture Media: Simple			
		media, Complex media, Selective media and Enriched media.			
7.		Unit8: Genetic recombination in bacteria	3		
		Transformation, Conjugation-F+, F-, Hfr & F' strain, Transduction,			
		Generalized & specialized types.			
8.		Unit9: Microbial Diseases	4		
		Name of pathogen, symptoms, pathogenesis, mode of action			
		&preventive measures of following diseases: Bacterial (Polio,			
		Typhoid, Staphylococcal Food Poisoning), Viral(Dengue, AIDS).			
Sugges	ted R	eadings:			
\rightarrow	Cum Wiley	nings. Black, J. G. (2011). Microbiology: Principles and Explorations. 8th ed. John y and Sons, New York.			
\triangleright	Camp	bell, R. (1983).MicrobialEcology.2nded.Oxford, Blackwell.			
\succ	Pineh	uk, G. (2003). Schaum's outline Series: Theory and Problems of			
	Immu	nology. McGraw-Hill.			
\triangleright	Press	cott, L.M., Harley, J. P. and Klein, D.A. (2011). Microbiology, 8th ed. McGrav	W		
N	Hill,	New York.			
	 Schlegel, H.G. (1995). Generalivilicrobiology. /thed. Cambridge University Press. Slongrewecki, LL, and Foster, LW. (2000). Microbiology. An Evoluting Science. Norton 				
>	 Talaro, K. and Talaro, A. (1999). Foundations in Microbiology 3rd ed. Dubuque 				
	McG	raw- Hill.			
\succ	Torto	ra, G.J., Funke, B. R., and Case. C.L. (2008). Microbiology. An Introduction.9t	h		
	ed. Benjamin /Cummings Publishing. Menlo ParkCalif.				
\triangleright	Voyle	eys, B.A. (2002). The Biology of Viruses. 2nd Edn. McGraw Hill.			
1					

Major 704 P: Microbiology

Credits: 01

- 1. Simple staining and Gram's staining of bacteria.
- 2. Preparation of liquid media (broth) and solid media for routine cultivation of bacteria.
- 3. Preparation of slant and stab.
- 4. Pure culture techniques: Spread plate, Pour plate and Streak plate
- 5. Biochemical test for characterization: Catalase, Nitrate-reduction, Indole production, Methyl Red and Voges-Proskauer Test.
- 6. Microbiological examination of milk (Methylene blue reductase test).
- 7. Sugar fermentation test.

Minor 701: Animal Behaviour

Credits: 04

Credits: 03

Minor 701T: Animal Behaviour

Course objectives and expected outcome

This course will introduce you to animal behavior research and its (very recent) history. We shall investigate the origins (ultimate cause) of behaviour, its role in an animal's survival and reproduction, and how behaviours evolve across evolutionary time. We will explore the evolution of benevolence, reproductive behaviour and communication. We will also discuss how animals choose foraging strategies, avoid predators, find suitable territories, and decide to migrate. The topic of behavioral research in zoos and its importance in species conservation will be examined. The course also covers the proximate reasons of behaviour, what drives behaviour, and the importance of ontogeny (organismal development). Although the basis of conduct lies in neurobiology and the brain, these will not be explored in length in this course. We will talk about the role of memory and learning in animal behaviour.

Sl. No.	Topics						
1	Unit I Concept of Ethology	7					
1.	Introduction Origin & history of Ethology	/					
	• Introduction - Origin & history of Ethology						
	• Brief profiles of Karl von Frish, Ivan Pavlov, Konard						
	Lorenz, Niko Tinbergen.						
	• Wiechamsin of Benaviour. Proximate & unimate causes						
	of behaviour. Stimulus, Releaser & Sign Stimulus.	12					
2.	Unit 2 - Classification of behavioural Patterns	13					
	• Behavioural Patterns: Stereotyped Behaviours, FAP,						
	acquired behaviour, Instinct vs Learnt Behaviour,						
	Associative learning, classical and operant						
	Conditioning, Habituation, Imprinting, Conflict						
	behaviours.						
3.	Unit 3. Social behaviour obstacles solving ecological	14					
	behaviour, reproductive behaviour						
	• Social behaviour, Concept of society.						
	• Communication and the senses. Ritualization, Signals,						
	Altruism, Insect society with honey bee as example,						
	Foraging in honey bee and advantages of the waggle						
	dance.						
	• Foraging behaviour -(Finding food, selecting food,						
	capturing food, consuming food) Territorial behaviours,						
	Antipredatory behaviours, Aggressive behaviours, Play						
	behaviours.						
	• Reproductive behaviour - Asymmetry of sex Sexual						
	dimorphism, Male Choice, Inter sexual selection (male						
	rivalry), Intra sexual selection (female choice),						
	Diversity in mating system. Courtship behaviour,						
	Parental care, Problems of offspring recognition,						
	ethogram.						

4.	Unit 4 - Introduction to Chronobiology	5
	Historical developments in Chronobiology Biological	
	oscillation: the concept of Average, amplitude, phase	
	and period, adaptive significance of biological clocks.	
5.	Unit 5: Biological Rhythm	6
	Types and characteristics of biological rhythms: short and long	
	term rhythms, Circadian rhythms Tidal rhythms and Lunar	
	rhythms, concept of synchronization and masking, Photic and	
	non-photic zeitgebers, Circannual rhythms, Photo period and	
	regulation of seasonal reproduction of vertebrates, Role of	
	melatonin, many behaviours in animals are rhythmic in nature.	
Sugg Anir John Paul Asso Chro J. De USA Insee (3rdl Biol Sprin	gested Readings: hal Behaviour by Drickamar. Alcock, Animal Behaviour, Sinauer Associate Inc., USA. W. Sherman and John Alcock, Exploring Animal Behaviour, Sinau- ciate Inc., Massachusetts, USA. nobiology Biological Timekeeping: Jay. C. Dunlap, Jennifer. J. Lor c Coursey (ed). 2004, Sinauer Associates, Inc. Publishers, Sunderlan et Clocks D.S. Saunders, C.G.H. Steel, X., Afopoulou (ed.) R.D. Lev Ed) 2002 Barens and Noble Inc. New York, USA ogical Rhythms: Vinod Kumar (2002) Narosa Publishing House, De hger-Verlag, Germany.	er ros Patricia Id, MA, wis. elhi/

Minor 701 P: Animal Behaviour

Credits: 01

- 1. To study nests and nesting habits of the birds and social insects.
- 2. To study the behavioural responses of wood lice to dry and humid conditions.
- 3. To study geotaxis behaviour in earthworm.
- 4. To study the phototaxis behaviour in insect larvae.

RAJA NARENDRALAL KHAN WOMEN'S COLLEGE (AUTONOMOUS)

Semester-VIII Course Structure

Sl.	Name of the Courses	No. of	Credits	Full
No.		Papers		Marks
1	Major	02	08(4x2)	150(75x2)
2	Minor	01	04	75
3	Research Project	01	12	225
	Or		Or	
	DSE-I, DSE-II, DSE-III		4×3	
Total		06	24	450

Raja N. L. Khan Women's College (Autonomous)

Curriculum for Undergraduate in Zoology

[NEP 2020]

Semester-VIII

]	Feach	ing		Marks
Paper Code	Name of the Subject	Nature	Scheme in hour per week		Credit		
			L	Т	Р		
ZOOMJ801	MJ801T: Methods in Biology	Major Course	3	0	0	4	75
	MJ801P: Methods in Biology (Practical)	Major Cource	0	0	1		
ZOOMJ802	MJ802T: Biotechnology	Major Cource	3	0	0	4	75
	MJ802P: Biotechnology (Practical)	Major Cource	0	0	1		
RESEARCH					1	12	225
PROJECT						Or	
Or ZOODSE801 ZOODSE802 ZOODSE803						4×3=12	
	MI801 T: Animal Behaviour	Minor Course	3	0	0		75
ZOOM108A	MI801 P: Animal Behaviour (Practical)	Minor Course [Practical]	0	0	1	4	

L=Lecture, T=Tutorial, P=Practical

Major 801: Methods in Biology

Credits: 04

Major 801T: Methods in Biology

Credits: 03

Course objectives and expected outcome

This course is designed to offer knowledge on various domains of biology with a concrete understanding of advanced molecular biology techniques, instrumentations, biochemical methods and their applications. The implication of this learning will be effective in various research fields, biomedical and clinical laboratories and in industries. The budding minds will be more inclined to cutting edge research through generation of innovative ideas and troubleshooting of current research problems with the application of these techniques for the betterment of environment and society.

Sl. No	Contents	Allotted Lecture
1.	 Unit 1: Methods in Molecular Biology a) Isolation and purification of DNA (Plasmid and Genomic), RNA and proteins; Separation of nucleic acids and protein: Agarose gel electrophoresis and sodium dodecyl sulphate-polyacrylamide gel electrophoresis; amplification of DNA by polymerase chain reaction; RT-PCR. b) Introduction to Recombinant DNA Technology; General strategy of gene cloning: genomic libraries; cDNA libraries; single gene cloning; Expression of recombinant proteins using bacterial, animal and plant vectors. 	15
	c) Northern Blotting, Southern Blotting and FISH.	
2.	Unit 2: Biophysical and Biochemical methods a) Microscopic techniques	15
	 Microscopy: general principle; Resolving power; Image processing methods and applications; Optical microscope; Fluorescence microscope; Confocal microscope and Electron microscope. b) Spectrophotometry UV-visible light spectroscopy; Fluorescence Spectroscopy; Infrared and Raman spectroscopy; Nuclear magnetic resonance spectroscopy and their applications in Biology. 	

	c) Centrifugation			
	General Principle, types and applications.			
	d) Chromatographic techniques			
	Chromatography: General Principle and Emerging Trends, Partition			
	Chromatography, Adsorption Chromatography, Thin Layer			
	Chromatography, Gel Filtration Chromatography, Ion-Exchange			
	Chromatography, Affinity Chromatography, HPLC and FPLC.			
	e) Immunological Techniques			
	ELISA; Western blotting; Immunofluorescence and Flow Cytometry.			
3	Unit 4. Methods in Environmental Biotechnology			
5.	a) Bioremediation: In situ and Fx situ Bioremediation	10		
	b) Bioremediation of Xenobiotic components and hydrocarbons			
	a) Divitoremediation			
	b) C			
	d) Cryopreservation; Integration of different rural biotechnological tools.			
4.	Unit 4: Electrophysiological methods	5		
	Patch-clamp recording; ECG; PET; MRI; fMRI; CAT.	5		
Suggested Readings:				
~	Wilson, K. and Walker, J. (2009). Principle and techniques of biochemistry and Molecular Biology 7 th Edition. Cambridge University Press.			
\succ	Sheehan, D. (2009). Physical biochemistry: Principles and Applications, 2 nd Edition.			
	Wiley.			
	Ramesh, V. (2019). Biomolecular and Bioanalytical Techniques: Theory, Methodology and Applications, Wiley.			
\succ	Kumar, P. (2021). Biophysics and Molecular Biology, 4th edition. Pathfinder I	Publication,		
	India.	·		
Major 801P: Methods in BiologyCredits: 01				
Course Contents:				

- 1. Extraction of protein from biological sample and demonstration of SDS-PAGE.
- 2. Demonstration of various chromatographic techniques used in analytical research.
- 3. Institutional visit for learning about various sophisticated instruments used in biomedical research.
- 4. Bioremediation of pollutants by selected soil microorganisms.
- 5. Estimation of DNA by UV double beam spectrophotometry.

Major 802T: Biotechnology

Course objectives and expected outcome

This course teaches organization and expression of plants and animal genome and plant and animal tissue culture. Students learn about transgenic animals, their application in pharmaceutical industry, cloning and its importance. This course prepares the students for appreciating its benefits and applications in biotechnological, pharmaceutical, medical and agricultural field. Knowledge about different cloning vectors, cDNA libraries, different hybridization techniques, transgenic animal production.

Course Contents:

Sl.No.	Contents	Lecture		
1.	Introduction: Organization of prokaryotic and eukaryotic	5		
	genome, Concept of genomics, History of Biotechnology and			
	Application			
2.	Recombinant DNA technology: Cloning vectors; Plasmids,	10		
	Cosmids, Phagemids, Lambda Bacteriophage, M13, BAC, YAC,			
	MAC, shuttle vector and Expression vectors. Restriction			
	Enzymes: Nomenciature, detailed study of Type I, II & III.,			
3	Molecular Techniques in Gene manipulation: Transformation	16		
5.	techniques: Calcium chloride method and electroporation	10		
	Construction of genomic and cDNA libraries and screening by			
	colony and plaque hybridization, Gel electrophoresis, Southern,			
	Northern and Western blotting; DNA sequencing: Sanger method;			
	Polymerase Chain Reaction, DNA Finger Printing and DNA			
	microarray			
4.	Genetically Modified Organisms: Production of cloned and	6		
	transgenic animals: Nuclear Transplantation, Retroviral Method,			
	DNA microinjection. Applications of transgenic animals: Production of pharmacouticals production of deport organs			
	knockout mice			
5.	Culture Techniques and Applications: Animal cell culture	8		
	expressing cloned genes in mammalian cells. Molecular diagnosis	0		
	of genetic diseases (Cystic fibrosis, Sickle cell anemia)			
Suggested Readings:				
➢ Brown, T.A.(1998).Molecular Biology Labfax II: Gene Cloning and DNA				
Analysis. II Edition, Academic Press, California, USA.				
Glick, B.R. and Pasternak, J. J.(2009). Molecular Biotechnology-Principles and				
Applications of Recombinant DNA. IV Edition, ASM press, Washington, USA.				
 Weaver. Molecular Biology of Gene. Sthedition. Driverous & Transmon, Driverinles of Cana Manipulation and Concerning 7th addition 				
\sim Pr	 P K Gunta: Biotechnology and Genomics Rastogi publishers (2003) 			
P. K. Gupta: Biotechnology and Genomics, Rastogi publishers(2003).				

Credits: 04

Credits: 03

Major 802P: Biotechnology

Credits: 01

Course Contents:

- 1. Genomic DNA isolation from E. coli
- 2. Plasmid DNA isolation (pUC 18/19) from E. coli
- 3. Restriction digestion of plasmid DNA.
- 4. Construction of circular and linear restriction map from the data provided.
- 5. Calculation of transformation efficiency from the data provided.

6. To study following techniques through photographs a. Southern Blotting b. Northern Blotting c. Western Blotting d. DNA Sequencing (Sanger's Method) e. PCR f. DNA fingerprinting 7. Project report on animal cell culture

RESEARCH PROJECT

Credit 12

- 1. Topic specific research work will be carried out under respective guide/coguide.
- 2. A comprehensive report should be submitted.
- 3. Power point presentation of research report
- 4. The research outcomes of their project work may be published in peerreviewed Journal or may be presented in conferences/seminars or may be patented.

Credit (4×3=12)

Or

ZOODSE801 ZOODSE802

ZOODSE803

Minor 801: Animal Behaviour

Credits: 04

Minor 801T: Animal Behaviour

Credits: 03

Course objectives and expected outcome

This course will introduce you to animal behavior research and its (very recent) history. We shall investigate the origins (ultimate cause) of behaviour, its role in an animal's survival and reproduction, and how behaviours evolve across evolutionary time. We will explore the evolution of benevolence, reproductive behaviour and communication. We will also discuss how animals choose foraging strategies, avoid predators, find suitable territories, and decide to migrate. The topic of behavioral research in zoos and its importance in species conservation will be examined. The course also covers the proximate reasons of behaviour, what drives behaviour, and the importance of ontogeny (organismal development). Although the basis of conduct lies in neurobiology and the brain, these will not be explored in length in this course. We will talk about the role of memory and learning in animal behaviour. **Course Contents:**

Sl. No.	Topics	Allotted
		Lecture
1.	Unit I-Concept of Ethology	7
-	• Introduction - Origin & history of Ethology	
	• Brief profiles of Karl von Frish, Ivan Pavlov, Konard	
	Lorenz, Niko Tinbergen.	
	• Mechanism of Behaviour. Proximate & ultimate causes	
	of behaviour. Stimulus, Releaser & Sign Stimulus.	
2.	Unit 2 - Classification of behavioural Patterns	13
	• Behavioural Patterns: Stereotyped Behaviours, FAP,	
	acquired behaviour, Instinct vs Learnt Behaviour,	
	Associative learning, classical and operant	
	Conditioning, Habituation, Imprinting, Conflict	
	behaviours.	
3.	Unit 3. Social behaviour obstacles solving ecological	14
	behaviour, reproductive behaviour	
	 Social behaviour, Concept of society. 	
	• Communication and the senses. Ritualization, Signals,	
	Altruism, Insect society with honey bee as example,	
	Foraging in honey bee and advantages of the waggle dance.	
	• Foraging behaviour -(Finding food, selecting food, capturing food, consuming food) Territorial behaviours,	
	Antipredatory behaviours, Aggressive behaviours, Play behaviours.	
	• Reproductive behaviour - Asymmetry of sex Sexual dimorphism Male Choice. Inter sexual selection (male	
	rivalry). Intra sexual selection (female choice).	
	Diversity in mating system. Courtship behaviour,	

	Parental care, Problems of offspring recognition, ethogram.		
4.	Unit 4 - Introduction to Chronobiology	5	
	• Historical developments in Chronobiology Biological		
	oscillation: the concept of Average, amplitude, phase		
	and period, adaptive significance of biological clocks.		
5.	Unit 5: Biological Rhythm	6	
	Types and characteristics of biological rhythms: short and long		
	term rhythms, Circadian rhythms Tidal rhythms and Lunar		
	rhythms, concept of synchronization and masking, Photic and		
	non-photic zeitgebers, Circannual rhythms, Photo period and		
	regulation of seasonal reproduction of vertebrates, Role of		
	melatonin, many behaviours in animals are rhythmic in nature.		
 Suggested Readings: Animal Behaviour by Drickamar. John Alcock, Animal Behaviour, Sinauer Associate Inc., USA. Paul W. Sherman and John Alcock, Exploring Animal Behaviour, Sinauer Associate Inc., Massachusetts, USA. Chronobiology Biological Timekeeping: Jay. C. Dunlap, Jennifer. J. Loros Patricia J. De Coursey (ed). 2004, Sinauer Associates, Inc. Publishers, Sunderland, MA, USA Insect Clocks D.S. Saunders, C.G.H. Steel, X., Afopoulou (ed.) R.D. Lewis. (3rdEd) 2002 Barens and Noble Inc. New York, USA Biological Rhythms: Vinod Kumar (2002) Narosa Publishing House, Delhi/Springer-Verlag, Germany. 			

Minor 801 P: Animal Behaviour

Credits: 01

- 1. To study nests and nesting habits of the birds and social insects.
- 2. To study the behavioural responses of wood lice to dry and humid conditions.
- 3. To study geotaxis behaviour in earthworm.
- 4. To study the phototaxis behaviour in insect larvae.