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Chapter 1

Getting Started with R

1.1 Introduction

1.1.1 Learning Objectives

The primary objective of this laboratory is to get you started learning to use the R pro-
gramming language and environment. Learning a new language is a process that develops
with practice. Lots of practice. This lab will introduce some of the syntax and grammar
for using R as well as highlight some of its capabilities.

1.1.2 What is R ?

Ellner and Guckenheimer (2006a) describe R as follows:

R is an object-oriented scripting language that combines the programming lan-
guage S developed by John Chambers (Chambers and Hastie 1988, Chambers
1998) with

• a user interface with a few basic menus and extensive help facilities,

• an enormous set of functions for classical and modern statistical data anal-
ysis and modeling,

• graphics functions for visualizing data and model output.

1.1.3 Why use R ?

We will use R in this class because it is a free, powerful, rapidly developing (extensible),
and relatively easy to use. Plus, it works on multiple operating systems. Finally, R has
become a popular tool in biology and ecology as evidenced by the numerous discipline
specific packages of functions that have been published recently (e. g. Bolker et al., 2009;
Lau et al., 2013; Oksanen, 2011; Oksanen et al., 2007) and R specific ecology books (Bolker,
2008; Soetaert et al., 2008; Stevens, 2009). Thus, R is a tool that will serve our needs in
this class, but it should also continue to serve your research and analytical needs long after
this course.
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2 CHAPTER 1. GETTING STARTED WITH R

1.2 Text Editors and Integrated Development Environments

A good text editor is an essential tool for programming, scientific computing, and general
informatics work (see http://en.wikipedia.org/wiki/Text_editor). A text editor is
used for editing plain text files, which is the format of all uncompiled programs including
R scripts and functions. Notepad is an example of a basic text editor that comes with
Microsoft Windows. Microsoft Word is not a text editor. Instead it is a word processing
program that embeds hidden code into your documents. This code is important for word
processing and page layout, but it renders Word useless as a plain text editor. Programs
written in Word will generally not work.

As with all software, text editors come in multiple flavors. Some are barebones tools
like Microsoft Notepad, others such as Vi and Emacs are more like Swiss army knives. The
R program now comes with a general text editor to support writing R scripts. It is fairly
simple to use, but (1) it is not very powerful, and (2) if you need to program for SAS or
Matlab or any other language you will need a different text editor. Common text editors
include Vi and Emacs.

An Integrated Development Environment is a software tool to assist with coding.
IDEs typically include a text editor with language features like syntax highlighting and
parenthesis matching, but it will also include additional tools to help practice good coding.
The best IDE for R at the moment is R-Studio, which you can download for free from
http://www.rstudio.com. I strongly recommend that you use R-Studio for your course
projects.

1.3 Additional Resources

Like many computer issues, there is quite a bit of additional information about R available
on the world wide web. Here are a few resources to get you started.

• R Homepage http://www.r-project.org/

• R Reference Card http://cran.r-project.org/doc/contrib/Short-refcard.pdf

• Kickstarting R http://cran.r-project.org/doc/contrib/Lemon-kickstart/index.

html

• Getting Started with R http://cran.r-project.org/doc/manuals/R-intro.pdf

• Ecological Models and Data in R http://www.math.mcmaster.ca/bolker/emdbook/

1.4 Assignment

The instructor will introduce the R programming language and environment in class.
However, programming is best learned by doing it. Therefore, following this brief in-
troduction you will work through the introductory laboratory provided by Ben Bolker:
http://www.math.mcmaster.ca/bolker/emdbook/lab1.pdf.

Please complete the following problems: 2.1, 3.1, 5.1, 5.3, 5.4, 8.2, 8.3, 8.4, 8.5, 8.6, and
9.2. You will need to turn in a concise summary of the problem answers.

http://en.wikipedia.org/wiki/Text_editor
http://www.rstudio.com
http://www.r-project.org/
http://cran.r-project.org/doc/contrib/Short-refcard.pdf
 http://cran.r-project.org/doc/contrib/Lemon-kickstart/index.html
 http://cran.r-project.org/doc/contrib/Lemon-kickstart/index.html
http://cran.r-project.org/doc/manuals/R-intro.pdf
http://www.math.mcmaster.ca/ bolker/emdbook/
http://www.math.mcmaster.ca/ bolker/emdbook/lab1.pdf


Chapter 2

Practical Programming with R

Please see lecture notes
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4 CHAPTER 2. PRACTICAL PROGRAMMING WITH R

2.1 Introduction

This laboratory is a brief introduction to programming concepts for novice coders. At the
end of the laboratory, students should be able to do the following:

• Organize computational projects

• Identify and apply programming concepts such as loops and branching

• Recognize the computational savings of vectorizing tasks when possible

• Practice debugging and problem solving skills

• Create functions in R.

2.2 Assignment

There are two parts to this assignment. First, complete problems 1, 2, 3, 4, 6, 7, 9a in Jones
et al. (2012). Second, write an R function named “domeig” that takes as input a single
vector and returns a list with components “average” (mean of the values of in the vector)
and variance (the variance of the values in the vector) (Ellner and Guckenheimer, 2006b).



Chapter 3

Conceptual Modeling in the
Longleaf Pine Forest

In this laboratory, the class will construct a variety of conceptual models for different aspects
of ecology in the Longleaf Pine Forest on the UNCW campus. Students will practice model
conceptualization.
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Chapter 4

Single State Variable Models

4.1 Introduction

This laboratory exercise will provide you with experience in constructing, solving, and
analyzing a single compartment (state-variable) model. This laboratory includes both the
exponential and logistic growth models. Through this exercise, you will learn to encode and
solve the discrete and continuous time version of the models.

4.1.1 Learning Objectives

Through your work on this laboratory, you will learn the following;

• Practice scientific programming in R,

• Construct two forms (discrete-time and continuous-time) of the exponential growth
and logistic growth population models,

• Use numerical approximation techniques to estimate the solution of continuous-
time differential equations (Euler and lsoda),

• Calculate the error between the numerical approximation and the true solution, and

• Apply one-at-a-time sensitivity analysis to determine the effect of changing model
parameters.

4.1.2 Reporting your Work

Please describe your work in the form of a short narrative report. Include a brief introduc-
tion to the laboratory that describes both the modeling and learning objectives. It should
also briefly characterize the system you are modeling and identify its boundaries. This
should be followed by a task-by-task description of (1) the task, (2) the action you take,
(3) the result(s) of the action (with evidence like a table or graph), and (4) an ecological
explanation or interpretation of what is occurring when appropriate. Please include a copy
of your programs as an appendix to the report.

The final report will be due in class on the date specified on the course website. Please
email me PDF of your report and make sure to save it as “yourlastname-lab4.pdf”.

7



8 CHAPTER 4. SINGLE STATE VARIABLE MODELS

4.2 Discrete and Continuous Time Models

According to Gurney and Nisbet (1988), “A dynamic model is a mathematical statement of
the rules governing change”. We can then distinguish two types of mathematical statements:
an update rule that uses discrete time and a differential equation that uses continuous time.

An update rule describes “the relationship between the current and future state of
the system”. Let Nt be the current state of the system and Nt+∆t be the state after the
discrete interval of time ∆t. We can then write the generic update rule as

Nt+∆t = f(Nt). (4.1)

This type of equation is referred to as a difference equation. Equations of this form are
particularly suited for projecting the state of the system at regular intervals and are often
used to model species that reproduce with non-overlapping generations and simultaneous
reproduction, like many semelparous species. Mature adults of these organisms reproduce
once and then die. For example, the checkerspot butterfly Euphudrias editha bried once per
year. Adults fly for a short period of time, lay their eggs near April 1, and die (Hastings
1997).

A differential equation specifies the rate of change of a state variable N with respect
to a second variable like time t and represents a continuous change. The equations are
formally defined as

dN

dt
= lim

∆t→0

Nt+∆t −Nt
∆t

. (4.2)

4.3 Exponential Growth Population Model

In class, we discussed both the difference equation form and differential equation for of the
exponential population growth model. The difference model assumes that there are non-
overlapping generations, while the continuous differential model assumes births and deaths
happen all the time.

4.3.1 Discrete Difference Model

Recall that we can predict the future population size with the following discrete time dif-
ference model.

Nt+1 = Nt + rdNt (4.3)

Where Nt is the population size now, Nt+1 is the population size one time step into the
future, and rd is the discrete growth factor. When we factor like terms we get

Nt+1 = Nt(1 + rd)

and then we can let 1 + rd = λ so that

Nt+1 = λNt.

Note λ ≥ 0 by definition.
Gotelli (2008, p. 12) showed that we can use this equation recursively to predict future

population size some number of time steps into the future using

Nt = λtN0 (4.4)

where N0 is the initial population size and t is the selected future time step.
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4.3.2 Continuous Differential Model

dN

dt
= rN (4.5)

= (b− d)N (4.6)

Where N is he population density (number of individuals per area), r = (b − d) is the
intrinsic rate of growth, b is the population specific birth rate, and d is the population
specific death rate.

When considering differential equations like equation (4.2), Gurney and Nisbet (1998)
suggest that “A model that uses derivatives is essentially an update rule model with very
small time steps”. Differential equations are a bit more complicated to implement and use,
but are often worth the investment. For example, they are better for modelling species with
overlapping generations or variables that are affected continuously.

As Gotelli (2001) notes, the model in equation (4.2) tells us the instantaneous rate of
population change, but it does not directly let us project the size of the population at some
time in the future. To do this, we must integrate the model. We can use the rules of integral
calculus to find that the exact analytical solution for the exponential growth model is

Nt = N0e
rt, (4.7)

where Nt is the population density at time t, r is the intrinsic growth rate, and N0 is the
initial population density. Given No, r, and t, we can now predict the future population
size (making all the assumptions embedded in our model).

4.4 Logistic Growth Population Model

Recall from class that the logistic growth population model is defined as

dN

dt
= rN ∗

(
1− N

K

)
(4.8)

where N is the size of the population, r is the intrinsic growth rate, and K is the carrying
capacity.

To use this equation to project the future population size, we integrate the equation to
find the following

Nt =
K

1 +
[

(K−No)
No

e−rt
] (4.9)

Again, we can find the exact solution because the equation is integrable. What do we
do when we need to find the solution to a differential equation that is not integrable?

4.5 Numerical Approximation: Euler and lsoda Algorithms

In most cases, our models will not have an exact analytical integral solution. Therefore,
we will need to use numerical approximation techniques to estimate the solutions. The
reading introduced two methods: the Euler technique and the Runga-Kutta 2 technique
(Shiflet and Shiflet, 2006). These are useful for learning about numerical approximation
techniques, but we will usually use a more sophisticated algorithm called lsoda.
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4.5.1 Euler Technique

Euler’s technique is the simplest numerical method for approximating the solution to a
differential equation. It is quick and easy, but it typically generates the greatest mount of
error.

The method was described in detail in the reading. A quick summary of the technique
is that we estimate the population size at a fixed time step from now ∆t using the current
population size Nt. We can summarize this as

N(t+ ∆t) = N(t) + (r ∗N(t)) ∗∆t (4.10)

We would expect the relative error to decrease as ∆t decreases, and of course this is the
exact solution when ∆t→ 0.

Error We can estimate the error between the exact solution and our estimated solution
using the root mean sum of squared predicted (RMSEP) to compare fits. This is calculated
as

RMSEP =

√√√√ 1

n

n∑
i=1

(Npi −Nai)2 (4.11)

where Npi and Nai are the predicted and actual or true population values at i, and n is
the number of predicted points.

4.5.2 Using lsoda

Most computer packages like R and MATLAB have more sophisticated ODE solvers built
into the language. R uses a routine called lsoda that is included in the “deSolve” package.
New R packages can be installed using the command “install.packages(“package name”)”.
Once a package is installed on the computer, you will need to load it by typing “library(package-
name)”.

4.6 Tasks

Task 4.1 Discrete-Time Exponential Growth Model Projections

1. Coding Write a script that uses equation (4.4) to project the future population
size. Hint: this can be done with either a for-loop or more efficiently using
vectorization.

2. Sensitivity Analysis Show the effects of changing N0 and λ. As the cognitive
task is to compare the output of several models, we want to plot multiple
solutions on the same graph. Create two plots. In the first plot, let N0 = 20
and plot the solutions when λ takes values of {0, 0.5, 1, 1.5, 2}. In a second
plot, let λ = 1.25 and plot the solutions when N0 takes values of {1, 10, 50}.
Let t = {0, 0.5, 1, 1.5, 2, 2.5, . . . , 25}.

Task 4.2 Diagram the continuous time model

Create a diagram of the continuous time exponential growth model using the For-
rester symbols that we discussed in class. Make sure to clearly label each part.
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Task 4.3 Plot Exact Continuous Time Population Projections

Write an R script that uses the exact solution of the differential equation (equation
(4.7)) to project the future population sizes as time goes from 0 to 100. Start with
N0 = 5 and r = 0.1. Plot the solutions when r is −0.1, 0.1, and 1 on the same
graph. What happens when you change N0?

Task 4.4 Numerical Approximation using Euler and lsoda

In this task, you will use two numerical approximation techniques to estimate the
change in population. You will first use the Euler solution with a different time
steps and then you will use an “industrial strength” algorithm called lsoda. Given
the exact solution you coded in Task 4.3, you can then compare the amount of error
the different algorithms generate.

The R package deSolve has an ODE solver function called ode that will easily allow
us to implement the different algorithms (and many more!). The set up to use this
function is a bit tricky, so you will start your work from an existing set of programs.
After making sure that the deSolve package is installed on your computer (use
install.packages() if necessary), please download the following two file from the
course website: exponential.r.

1. Numerical integration approximation with Euler Method

First, read through the two program and try to understand how it works. What
is the Input, Action, Output? The exponential.r fist defines a new R function
that encodes the ODE model. Then, the file contains the code that defines the
initial conditions, model parameters, and then calls the ode function, which
requires the model function as an input argument. The run file also has the
code to plot an start to analyze the results.

Second, execute the program using the default parameters. What happens?
Notice that the ode function is initially set up to use the “method = euler”
integration algorithm with a time step of dt = 1.

Next, change the model parameters to investigate how they alter the program
function (i.e., sensitivity analysis). Please make any changes you find inter-
esting and useful to learn about the program. Finally, try alternative values
of the time step (dt) of 1, 0.1, and 0.01, and compare the approximated pop-
ulation trajectories to the analytically exact solution using RMSEP. You will
need want to create a new R function to calculate RMSEP. What happens as
dt increases? Why? What would you expect to happen in a function with
dynamics like the logistic equation? Please plot all 4 solutions on the same
figure.

2. Numerical integration approximation using lsoda

For our next task, we will use the lsoda routine. This is actually the default
algorithm for ode(), so to implement it, we can remove the method and hini
function parameters from the ode call. Using the same initial model param-
eterization as in Task 4.4.1, visually compare the lsoda solution to the exact
solution and calculate the RMSEP. How does this compare to the euler solu-
tion?

Task 4.5 Diagram the model logistic growth model

Create a diagram of the logistic growth model using the Forrester symbols that we
discussed in class. Make sure to clearly label each part.

http://people.uncw.edu/borretts/courses/bio534/Rfiles/exponential.r
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Task 4.6 Logistic growth model population projections

Modify the R scripts you used for Task 4.4 to project the future population size
of a population growing according to the logistic growth model. For your nominal
runs, assume that r = 0.1, N0 = 5, K = 100, and time from 0 to 100 days. Please
compare the analytically exact solution of the logistic growth model (equation 4.9) to
the numerical approximation with (1) the Euler solution with dt = {1, 0.1, 0.01}, and
with (2) the lsdoa algorithm in R . Plot all 5 solutions on one graph and calculate
RMSEP for each numerical approximation. Finally, describe any differences you
observed in how the numerical error accumulates in this model when compared to
the exponential growth model.

4.7 CHALLENGE PROBLEM: Schaffer Equation

Please complete this problem as time and your interest allow. However, not completing this
problem will not count against you.

M. B. Schaefer extended the logistic model to further consider the effect of fishing on
fish stocks. He assumed that fish harvest was proportional to abundance and modified the
logistic equation as

dN

dt
= rN

(
1− N

K

)
− FN, (4.12)

where F is the mortality from fishing pressure. Fishing mortality is often described as a
function of the fishing effort E and the effectiveness q of catching and removing the fish.
Thus, F = qE.

We know from our initial analysis of the logistic equation that in the absence of fishing,
the maximum growth rate is achieved when N = K/2 and that the growth rate at this
maximum is rK/4. In the fisheries context, the maximum growth rate is the maximum
sustainable yield (MSY) because if we could maintain the stock at this level and harvest
the production, it generates the greatest yield. The fish population size that generates the
MSY is termed the maximum net productivity (MNP).

What happens when we add fishing? As long as the harvest equals the biological pro-
duction, the stock will remain the same size. We can use the model (equation 4.12) to find
this equilibrium population size as follows.

To find the population size at equilibrium, we first set the differential equation to zero
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and solve for N∗ as follows

dN

dt
= rN

(
1− N

K

)
− qEN (4.13)

0 = rN

(
1− N

K

)
− qEN (4.14)

qEN = rN

(
1− N

K

)
(4.15)

qE = r

(
1− N

K

)
(4.16)

qE

r
= 1− N

K
(4.17)

N

K
= 1− qE

r
(4.18)

N∗ = K

(
1− qE

r

)
(4.19)

We can now substitute this equilibrium population size into the fishing function to
determine the yield (Y ∗).

= qEN∗ (4.20)

Y ∗ = qEK

(
1− qE

r

)
. (4.21)

This is a parabola with a maximum occurring at E∗ = r/2q.

Task 4.7 How does yield change with respect to fishing effort?

As biologists and resource managers, we might want to describe how the yield
changes with fishing effort. Create a plot of selected values of E versus the steady
state yield Y ∗ (equation 4.21). Assume q = 0.001, K = 100, and r = 0.1.

Task 4.8 How do biological growth, the harvesting rate, and population density interact?

To better understand the relationship between the biological growth rate, harvest
rate, and population density, please create a figure with two plots. In each, plot
the growth rate versus population density for the logistic growth function. To each
plot, add a line showing how the harvest rate (qEN) changes with population den-
sity. Recall that where these two curves intersect indicates the intersection of the
equilibrium population density and its equilibrium yield. In the first plot, show a
case where the population is under fished. In the second plot, show a case where
the population is over fished.
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Chapter 5

Ricker Model and Chaotic
Dynamics

5.1 Introduction

The Ricker model is a discrete-time analogue of the continuous time logistic model. (Ricker,
1954) first formulated to model fisheries stocks. The update rule is

Nt+1 = aNte
−bNt (5.1)

where Nt is the number of mature individuals at time t in years. Gurney and Nisbet (1998)
describe their application of the model to a fishery as follows:

“We work with a time increment (∆t) of 1 year, and denote the stock of mature
individuals at the census date in year t by Xt. Juveniles mature the year after
their birth. Adult fish spawn once before dying and produce a maximum of
[a] viable recruits to the following year’s stock. Due to cannibalism on eggs by
adults, the juvenile survivorship in a year when there are Xt adults is e−bXt ,
where b is a parameter related to the intensity of cannibalism.” (p. 27)

5.1.1 Learning Objectives

This laboratory provides you with the following:

• an introduction to the Ricker population model,

• construction of a discrete-time simulation model,

• application of sensitivity analysis for multiple model parameters and initial conditions,

• investigation of chaotic dynamics,

• practice with scientific programming in R, and

• practice communicating your ecological modeling results.

15
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5.1.2 Reporting your Work

Please describe your work in the form of a short narrative report. Include a brief introduc-
tion to the laboratory that describes both the modeling and learning objectives. It should
also briefly characterize the system you are modeling and identify its boundaries. This
should be followed by a task-by-task description of (1) the task, (2) the action you take,
(3) the result(s) of the action (with evidence like a table or graph), and (4) an ecological
explanation or interpretation of what is occurring when appropriate. Please include a copy
of your programs as an appendix to the report.

The final report will be due in class on the date specified on the course website. Please
email me PDF of your report and make sure to save it as “yourlastname-lab5.pdf”.

5.2 Model Dynamics and Chaos

In lecture and in previous laboratories, we have primarily observed deterministic models
that generate what we might call normal dynamics. A small change in initial conditions
or a parameter value tends to cause a proportionally sized changed in the dynamics. In
this laboratory we are working with a model that generates chaotic dynamics. Gurney and
Nisbet (1998) describe chaos as the “combination of non-periodic solutions and sensitive
dependence on initial conditions” (p. 29). Thus, there are two characteristics that must be
present in a model’s dynamics for it to generate chaotic dynamics. First, it must generate
non-periodic solutions that do not damp to a specific equilibrium. Instead, the dynamics
tend to revolve around one or more attractors, without quite reaching them. Second, the
model must show extreme sensitivity to its initial conditions. This is most typically seen as
wildly different predictions of variable behavior following a very small change in the initial
value. An example of this is shown in Fig. 4.1.1 of the assigned reading from Otto and Day
(2007).

Most models that generate chaotic dynamics only do so in selected parameter ranges.
Thus, one task of the model analyst is to determine how changing the model parameters
influences in model dynamics. We often ask the question: At one point does the model
behavior change from the typical dynamics, to periodic dynamics, to non-periodic dynam-
ics? Bifurcation plots like that shown in Fig. 4.1.2 (Otto and Day, 2007) illustrate these
transition points or thresholds.

5.3 Laboratory Tasks

Task 5.1 Parameter Sensitivity Analysis

Your first task is to write an R script to encode the Ricker model described above
using a for-loop. To begin, let N0 = 100, a = 2, and b = 0.001. The nominal
dynamics of this model are shown in Figure 5.1. Compare your output to these ex-
pected dynamics to ensure you have encoded the model correctly. Then, investigate
how the model changes when you change parameter b. Reset b to 0.001 and explore
how the behavior changes as you change a from 0.5 to about 20. What do you
observe? Describe the behavior changes you see and document your observations
with plots. What do you surmise is happening in this deterministic model (hint:
see reading from Otto and Day (2007))? How does this compare to your solutions
for the continuous time logistic equation? Next, investigate the following:
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Figure 5.1: Nominal dynamics of the Ricker model with a = 2, b = 0.001, and No = 100.

1. When b = 0.001, find the first value of a (to one decimal place) as you increase
from 2 at which the dynamics switch from a single steady-state equilibrium, to
a two cycle dynamic. Present evidence to support your discovery.

2. CHALLENGE: Given b = 0.001, can you find the value of a (to one decimal
place) at which the dynamics change from a periodic orbit to an a-periodic
orbit. Run the simulations long-enough to ensure your answer is correct. If
you are able to accomplish this task, present evidence to support your discovery
and explain the criteria you used to select this point.

Task 5.2 Initial Population Size Sensitivity Analysis

1. Reset your model parameters to a = 18 and b = 0.001 and now explore the
effect of changing the initial population size. To start, plot the population
dynamics predicted when N0 = 100 and when N0 = 101 on the same graph.
Use a time span from 0 to 30 years. What do you observe? Try a couple of
additional values.

2. Compare these initial results to the dynamics when a = 3, b = 0.001, and
N0 = 100or101. I recommend plotting this solutions on a separate graph.

3. Exploring the “sensitivity” of the model solution to changes in parameters
and initial conditions as you are doing in this laboratory is a simple form of
sensitivity analysis, and is a powerful technique to learn about the functions
or models you build or use.

5.4 Challenge Problem

If you have time and energy after completing the primary tasks in this laboratory, I present
the following as a puzzle to challenge your analytical and programming skills.
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Bifurcation diagrams like Figure 4.1.2 in the Otto and Day (2007, p. 118) reading are
often used to describe and summarize chaotic dynamics. See if you can create a bifurcation
diagram for the Ricker model.



Chapter 6

Two State Variables:
Consumer–Resource Dynamics

6.1 Introduction

In this laboratory you will construct and simulate two state variable models. Recall that a
state variable describes the change in a measurable quantity through time and usually has
units of M L−2 or −3. The models in this exercise are designed to give you some practice
in manipulating the carrying capacities, the asymptotic resource threshold and the refuge.
However, please conduct and report additional manipulations as you desire.

6.1.1 Learning Objectives

At the end of this laboratory you will be able to

• Construct and simulate a two compartment (i.e., a two state variable) model of an
ecological system;

• Draw an informative conceptual diagram of a modeled system using the Forrester
type symbolic vocabulary;

• Use system dynamics terminology to describe and classify the behavior of both
time-series trajectories and control functions;

• Perform sensitivity analysis to characterize the role of parameters in quantitative
models;

• Identify the ecological assumptions of the logistic and hyperbolic control functions;
and

• Distinguish between space and resource controls on compartment growth.

6.1.2 Scenario

For this exercise, consider your system of interest to be the section of the Lower Cape Fear
river that flows through Wilmington. Your modeling goal is to describe the ecological factors
that control the phytoplankton production in the river. Your initial model will consist of
two state variables: (1) an abiotic resource—a pool of phosphate (PO3−

4 )—with a constant

19
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input from upstream that is utilized by (2) a producer or consumer either controlled by
some form of intraspecific crowding (logistic) or by resource limitation. We will be utilizing
an ecosystem point of view.

These are continuous time, nonlinear differential equation models that are suitable for
the crude description of the dynamics of a wide variety of organisms, both semelparous
and iteroparous. The exercise is particularly designed so that you familiarize yourself with
the characteristics of both the logistic and hyperbolic control functions, both of which can
be generalized to more realistic and useful forms. Consider the bookkeeping unit of both
models to be elemental phosphorus (µgL−1).

6.1.3 Reporting Your Work

Please describe your work in the form of a short narrative report. Include a brief introduc-
tion to the laboratory that describes both the modeling and learning objectives. It should
also briefly characterize the system you are modeling and identify its boundaries. This
should be followed by a task-by-task description of (1) the task, (2) the action you take,
(3) the result(s) of the action (with evidence like a table or graph), and (4) an ecological
explanation or interpretation of what is occurring. Please include a copy of your programs
as an appendix to the report.

We will work on this laboratory for two weeks and the final report will be due in class
on the date specified on the course website. Please email me PDF of your report and make
sure to save it as “yourlastname-lab6.pdf”.

Assessment There are three tasks in this assignment, each worth 25%. The quality of
your report (following guidelines similar to the final project rubric) will be worth another
25%.

6.2 Two entity models with logistic space-control feedback

Table 6.1: Model variables, parameters, and their nominal values.
Name Symbol Nominal Value
State Variables

Phosphorus X1 2.0
Phytoplankton X2 0.01

Constant Inputs
Input of available phosphorus C 0.5

Specific rate parameters
Loss from available phosphorus pool δ1 0.001
Loss of phosphorus from phytoplankton δ2 0.08
Uptake (gross) of phosphorus by phytoplankton τ12 0.3

Control Parameters
Maximum density of phytoplankton K2 10.0
Resource half saturation constant k1 0.001
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6.2.1 Model Equations

dX1

dt
= C − δ1X1 − τ12X2 · f(X2) · f(X1) (6.1)

dX2

dt
= τ12X2 · f(X2) · f(X1)− δ2X2 (6.2)

Where

f(X2) =

(
1−

(
1− δ2

τ12

)(
X2

K2

)
+

)
+

(6.3)

f(X1) =
X1

X1 + k1
(6.4)

f(X2) is the logistic growth control function with Wiegert’s correction factor, and f(X1) is
a resource control function.

For your first run of this model, use initial conditions of X1= 2, X2 = 0.01, time = 100,
τ12 = 0.3, δ1 = 0.001, δ2 = 0.08, and C = 0.5. Notice that we are assuming that 100%
efficiency in the conversion of phosphate to phosphorus in phytoplankton. Recall that the
(•)+ notation indicates that • is constrained to be positive. This can be accomplished in R
using the maximum function as follows max (0, •).

6.2.2 Tasks

Task 6.1.1 Draw a Forrester diagram for this system using the visual vocabulary
introduced in class (see lecture notes on System Conceptualization).

Task 6.1.2 Explore the behavior of this system for a few values of K2 ranging from 1
to 15. Label the initial, transient, and steady states of the dynamics. Please explain
the qualitative differences in the system dynamics as K increases. Figure 6.1 shows
the nominal dynamics for this system with K2 = 2, which you can use to verify that
your model solution is working.

NOTE : What would happen if the f(X1) function were not included in equation 6.2?
The f(X1) function in this model is used here to constrain the consumption rate so
that the phytoplankton are unable to consume more phosphorus than is physically
available. An alternative way to accomplish this task might be to use an if–then
statement to turn off the consumption rate when X1 is zero. However, in some cases
this construction generates numerical errors when using the ode function. Thus, here
we are trying to approximate a step function (0,1) using a Monod resource control
function with a really small half-saturation constant. However, our focus on this
task is on the effect of the space control.

Task 6.1.3 Leave K2 = 10 and C = 0.5 and increase the initial value of X2 to levels
2 to 50 times the carrying capacity and note the responses. Discuss what would
happen in this model at these very high initial values if you did not constrain f(X2).

Task 6.1.4 What does this model predict will happen if the phosphorus input into the
system continues to increase due to increased pig farming in the watershed? With
K2 = 10, change the input constant C to simulate this change.
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6.3 Two entity models with resource control

In this task we consider how a non-living resource might control the growth of the consumer
compartment. This is in contrast to the competition for unspecified resources represented
in the logistic function or the Lotka-Volterra competition equations that we often assume
to be space.

Variable and parameters are the same as in Table ?? except for the additional control
parameters of the resource refuge level (α12).

6.3.1 Equations

dX1

dt
= C − δ1X1 − τ12X2f(X1) (6.5)

dX2

dt
= τ12X2f(X1)− δ2X2 (6.6)

Where f(X1) can be one of several functional forms

f(X1) =

(
1− k1

(k1 +X1)

)
+

(6.7)

f(X1) =

(
1− α12

X1

)
+

(6.8)

f(X1) =

(
Xb

1

Xb
1 + kb1

)
+

(6.9)

Where equation (6.7) is the hyperbolic form of the Michaelis–Menten equation used as
a control function for resource uptake (this equation uses a 1/2 saturation parameter),
equation (6.8) is the refuge form of the hyperbolic Michaelis–Menten resource control, and
equation (6.9) is a generalized form of the Michaelis–Menten equation (see lecture notes on
control functions).

To visualize the change from space control to resource control, imagine that we expand
the surface area (more light) with the same volume. Whereas the algae in the previous
example could indeed be exposed to limitation by scarcity of a resource (when they took
the standing stock of X1) to zero and existed only on the continuous input), you should
have noted that the response was “all or none”, i.e. they increased, controlled only by the
influence of whatever space control was affecting them until the space control function was
relaxed enough such that the phosphorus went to zero. Then, they existed at a level set by
the rate of input in the phosphorus compartment (X1). Now we will explore the behavior
of the system when the growth rate of X2 is affected in a continuous manner by changing
densities of X1 (this is called Donor Controlled). Observe how the interactions change with
the alternative response functions.

6.3.2 Tasks

Task 6.2.1 Draw a Forrester diagram for this system.

Task 6.2.2 Using the hyperbolic form of the Michaelis–Menten equation with a 1/2
saturation parameter (where k1 specifies the value of the limiting resource when the
ingestion permitted is 0.5 of the maximum), set time from 1 to 200, the initial values
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of X2 to 0.1, and δ1 to 0.01. (these changes are to make the interactions as clear as
possible).

• Explore the behavior as in Task 6.1.2 for a few values of k1 in the range of 1
to 20.

• For each scenario, plot both the time series of the compartment behaviors and
the realized control function f(X1). HINT: If you calculate f(X1) in your
model function as an auxiliary variable, you can then add it to your list of
information to return in the out variable.

Task 6.2.3 Using the same parameter values as before, use the refuge from of hy-
perbolic control function (equation 6.8) as the control on phosphorus uptake by
phytoplankton. In this formulation, α12 specifies the minimum standing stock of
X1, below which it is not available to the algae. Repeat the simulations using values
for α12 in the range of 0 to 10 (you can do more if you are curious).

Task 6.2.4 Again using the same parameter values as in Task 6.1.2 repeat your investiga-
tions with the generalized Michaelis–Menten functional response shown in
equation (6.9). Set k1 = 10, and then explore the effect of changing b, starting with
b = 1. Again, please present time series plots of both the state variables and the
realized control functions.

Task 6.2.5 How would you classify the three resource control functions using Holling
typology of functional responses? Please present plots to support your conclusion.
Identify one or two ecological assumptions encoded into these functions.

Task 6.2.6 CHALLENGE TASK Please complete this task as time and interest allow.

Recall the bifurcation plot used to show the changing nature of the equilibrium
solutions of the Ricker model in the last lab. The x-axis of the bifurcation plot
is one of the model parameters and the y-axis is the equilibrium or steady-state
solution of a variable in the model. In a model exhibiting chaotic dynamics, the
steady-state solution shifts from a single equilibrium to multiple values, but in a
model exhibiting more simple dynamics, the steady-state solution is a single value.
This challenge task is to create a plot of the model steady-state values versus a
wide range of parameter values to quickly evaluate the effect of changing the model
parameters on the steady-state value.

6.4 Assumptions

Task 6.3.1 Consider the structure of the models you have investigated here and the
ecological assumptions they make. Briefly discuss the major assumptions and
why they are or are not appropriate for our modeling objective. If you were going
to make one change to the model to improve its realism, what change would you
make and why?

There is no one true answer to this question. Instead, I am interested to learn how you
are reasoning through the modeling problem.
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Figure 6.1: Nominal dynamics for (a) the model for Task 6.1 using the parameter values in
Table 6.1 and K2 = 2. and (b) Task 6.2.2
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Three State Variable Models

7.1 Introduction

In this laboratory you will construct and simulate models with three state variables. You
will consider two different structures: chain and resource competition (web). This material
builds on the previous laboratory exercises and provides you an opportunity to investigate
several of the modeling ideas we have discussed in class.

7.1.1 Learning Objectives

At the end of this laboratory you will be able to

• Construct and simulate a three compartment (i.e., a three state variable) model of an
ecological system;

• Draw an informative conceptual diagram of a modeled system using the Forrester
symbolic vocabulary;

• Use a model system to identify the ecological relationships necessary to achieve a
stable limit cycle;

• Use a model system to investigate the consequences of changing the state variables’
initial conditions and define alternative stable states;

• Clearly communicate your scientific work in the form of a brief narrative report.

7.1.2 Reporting Your Work

Please describe your work in the form of a short narrative report. Include a brief introduc-
tion to the laboratory that describes both the modeling and learning objectives. It should
also briefly characterize the system you are modeling and identify its boundaries. This
should be followed by a task-by-task description of (1) the task, (2) the action you take,
(3) the result(s) of the action (with evidence like a table or graph), and (4) an ecological
interpretation of what you learned. Please conclude the report with a section in which you
consider what you have learned from this laboratory. How does it relate to the other topics
we have discussed in class? How might it relate to your research? What concept or task
did you struggle with the most? Why? Include a copy of your programs as an appendix to
the report.

25
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We will work on this laboratory for two weeks and the final report will be due in class
on the date specified on the course website. Please email me PDF of your report and make
sure to save it as “yourlastname-lab7.pdf”.

Assessment There are two tasks in this assignment, each worth 45% of the grade. The
quality of your report (following guidelines similar to the final project rubric) will be worth
another 10%.

7.2 Linear Chain

For this task you will construct a linear chain model with three compartments: (1) an
abiotic resource with constant input, (2) a plant producer, and (3) an herbivorous consumer.
Structurally, it just adds one level, the consumer, to the previous model of phosphorus–
phytoplankton dynamics. For example, imagine that we introduce a population of Daphnia
to feed on the algal compartment.

Certain combinations of parameter values in the linear-chain model can produce a sit-
uation where at least two locally-stable steady states are possible.

The functional form we will use to represent resource control in both this model and
the one in Task 7.2 is the linear special case of the generalized hyperbolic function:

f(Xi) =

(
1−

(
Kij −Xi

Kij − αij

)
+

)
+

. (7.1)

In this equation Kij is the satiation level of j on i and αij is the refuge of i from consumption
by j. Being linear, this function produces a constant change in the feedback effect for a
unit change in the resource.

The functional form for space-related control in this model and the one in Task 7.2
is the logistic.

f(Xj) =

(
1− wj

(
Xj + βkXk − αj

Kj − αj

)
+

)
+

, and (7.2)

wj =

(
1− δj

τij

)
. (7.3)

Given this information, construct a linear three entity model in which the first compo-
nent is an abiotic pool of phosphorus (X1), the second is an algal consumer (X2), and the
third is a daphnid predator on the algae (X3). This system will include the variables and
parameters listed in Table 7.1. Values listed with the parameters are the initial values to use
for this exercise, which were chosen as both biologically reasonable rates and constants for
the example system and as a set that will exhibit the range of behavior desired in response
to manipulations of enrichment rate and starting densities.
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Table 7.1: Variables and Parameters for Task 7.1

Name & Description Symbol Nominal Value
State Variables and Initial Values (Xi(0))

Phosphorus X1 10
Algae X2 10
Daphnids X3 10

Constant Rates
Input of available phosphorus C1 5

Rate Parameters
Max uptake of X1 by X2 τ12 0.35
Max uptake of X2 by X3 τ23 0.5
Loss rate from X1 δ1 0.1
Loss rate from X2 δ2 0.1
Loss rate from X3 δ3 0.2

Control Parameters
Refuge of X1 α12 5
Threshold response density of X2 α2 20
Refuge of X2 α23 5
Threshold response density of X3 α3 10
X2 satiation concentration of X1 K12 20
Carrying Capacity of X2 K2 70
X3 satiation concentration of X2 K23 20
Carrying Capacity of X3 K3 30

The equations for this model are:

dX1

dt
= C1 − δ1X1 − τ12X2 f(X1)︸ ︷︷ ︸

resource

f(X2)a︸ ︷︷ ︸
space

(7.4)

dX2

dt
= τ12X2 f(X1)︸ ︷︷ ︸

resource

f(X2)a︸ ︷︷ ︸
space

−δ2X2 − τ23X3 f(X2)b︸ ︷︷ ︸
resource

f(X3)︸ ︷︷ ︸
space

(7.5)

dX3

dt
= τ23X3 f(X2)b︸ ︷︷ ︸

resource

f(X3)︸ ︷︷ ︸
space

−δ3X3 (7.6)

Notice that these equations assume that there is 100% assimilation for simplicity. How
will this modeling assumption effect your work below?

Task 7.1.1 Draw a Forrester diagram of this system.

Task 7.1.2 Simulate the model using the parameter values defined in Table 7.1. This
will be the nominal model dynamics to which you can compare the changes you
make in the following tasks. For your reference, the expected nominal dynamics are
shown in Fig. 7.1.

Stable limit cycles can occur in a system for a variety of reasons including timelags
(which we have not discussed), cyclic external influences, and internal system dynamics.
Recall that for a limit cycle to be stable, it must represent a dynamic steady state (i.e.
the cycle amplitude should not increase or decrease). Here we will investigate this last
factor more closely. When given enough enrichment (nutrients entering the system, C1),
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Figure 7.1: Nominal dynamics for Task 1 (a) and Task 2 (b).

the resource-prey-consumer system described above will cycle provided certain relationships
between the top predator in the chain and its prey occur. These involve the growth rate
of the algae vs. daphnids, the algal refuge from Daphnia, and the degree of crowding
the daphnids can withstand without severe intra-compartmental interference competition
occurring.

Task 7.1.3 Change the appropriate parameter values in your model to produce a stable
limit cycle without explicit timelags. What value of C1 will you use? Why?

There is also an enrichment level (C1) where the system exhibits two alternative
locally-stable steady states depending on the starting densities (initial conditions) of
both the Daphnids and Algae (no additional parameter changes need to be made). See
Beisner et al. (2003) for an explanation of alternative stable states. In one of these cases
the steady state value of algae is larger than the daphnids (X2 > X3), and in the other case
the steady state value of daphnids is larger than the algae (X3 > X2).

Task 7.1.4 Starting with an enriched system (high value of C1) and all other parameters
as initially defined, explore the initial conditions necessary to generate two
alternative stable states. Think in terms of allowing the prey to escape complete
predator control when the prey are started high and of being held to a low level
when they are started low. Explain what you did to achieve this goal.

7.3 Resource Competition

For this task, you will construct a two-competitor model in which both groups of algae
utilize a single pool of available phosphorus, which will include interspecific interference
competition in the manner we discussed in lecture and using the variables and parameters
defined in Table 7.2.

Task 7.2.1 Draw a Forrester diagram the model and formulate the equations to sim-
ulate this system using what we have learned in class and the example provided in
your notes;
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Table 7.2: Variables and Parameters for Task 7.2

Name & Description Symbol Nominal Value
State Variables

Phosphorus X1 10
Algae1 X2 10
Algae2 X3 10

Constant Rates
Input of available phosphorus C1 8.15

Rate Parameters
Max uptake of X1 by X2 τ12 0.35
Max uptake of X1 by X3 τ13 0.2
Loss rate from X1 δ1 0.1
Loss rate from X2 δ2 0.2
Loss rate from X3 δ3 0.1

Control Parameters
X2 satiation concentration of X1 K12 20
X3 satiation concentration of X1 K13 50
Carrying Capacity of X2 K2 30
Carrying Capacity of X3 K3 50
Refuge of X1 from X2 α12 5
Refuge of X1 from X3 α13 10
Threshold response density of X2 α2 10
Threshold response density of X3 α3 20
Competition coefficient X2 on X3 β2 0.2
Competition coefficient X3 on X2 β3 0.8

7.3.1 Modes of Control

Task 7.2.2 If the model were optimally enriched (X1 > {K12,K13}), then what would
you expect the outcome of the competition between X2 and X3 to be?
Why? Notice that this situation reduces to two species competing for a common
resource. Thus, you should be able to use a graphical isocline analysis to predict
the outcome.

This “web” model includes interspecific competition and it exhibits behavior in response
to enrichment and differences in initial conditions that differs in many ways from that shown
by the model in Task 7.1 (recall the graphical analysis of four possibilities that we discussed
in class). For example, at certain levels of enrichment the competitor model will show an
effect due to starting density in that two different outcomes are possible when the winner
of the competition is a factor. However, the model cannot exhibit two locally-stable states
in which both competitors survive in each case.

7.3.2 Algae Adaptations

The algae parameter values and constants suggested in Table 7.2 are those that represent
two distinct adaptations. If you study the values, you should be able to see that one species
has attributes that make it tolerant of crowding, a good interference competitor, but slower
growing than the second, which is a poor interference competitor, but has a greater growth
rate and is more efficient at utilizing resources.
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Task 7.2.3 Which species is which? Why? What do you expect the outcome of this
simulation to be? How are you making this prediction?;

Task 7.2.4 Using the values in Table 7.2 as a start for your simulations, explore the
behavior of this model. What is the nominal behavior? What happens if you alter
the enrichment rate?

Task 7.2.5 When you are satisfied that you fully understand the variation in behavior and
the reasons behind it, make whatever changes you find interesting in some of the
other model parameters. When you produce an interesting or unexpected result,
report graphs, a brief description, and your explanation if you can suggest one. If you
would like, you may substitute some of the other formulations of control functions we
have discussed in class or those you have constructed to fit any particular situation,
and observe the effects on the behavior of the model.

7.4 TMP

Here are some additionally useful references:
Blindow et al. (1993); Scheffer et al. (2001); Schröder et al. (2005)
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Connecting Ecological Models with
Data

8.1 Introduction

In class we talked about four specific ways in which modelers must consider and use empirical
data. These include parameter estimation, function selection, forcing or exogenous
variables, and model evaluation. In this laboratory, we will practice

1. using a non-linear least squares method to fit parameters to a proposed function that
describes the process, and

2. using empirical observations of an exogenous variable to drive the system dynamics.

These are eminently practical skills for mathematical modelers and data analysis in general.
No report is required for this laboratory.

8.2 Importing Data from Text Files

The first new issue you will encounter is that we have data stored as space delimited text
files that we need to enter into R. This required using the read.table command. If my
data file is called data.txt and the file is in my current working directory of R , then I would
use the command as d = read.table(‘‘data.txt’’). The R variable d is now a data
frame in which the columns are variables and rows are observations. For example, if my
text file contaiss the data in Table 8.1, then, d$V 1 is the first column of data.

Table 8.1: Example data
1 50 2
2 51 6
3 52 5
4 53 4

It is convenient to add column headers to your data when it is store as an ascii text
file like this because it helps you remember what the variables were. If our data file
has variable names on the first line, we will want to modify our command to read d =
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read.table(‘‘data.txt’’, header=TRUE). When you use this command on the data for
this exercise, use the str(d) command to see how this changes the data frame.

The read.table command assumes that your observations are space delimited, but your
data may delimited by other markers like commas or tabs. You can add a parameter to the
read.table command to specify the delimiter. For example, d = read.table(‘‘data.txt’’,

header=TRUE, sep=‘‘,’’) specifies that the delimiter is a comma.

It is good practice to store your data in flat plain ascii text files. This can generally
be read into a wide variety of analytical software including SAS, Matlab, and R and it is a
non-proprietary format. Many biologists store there data in Excel. This can be convenient,
but it often requires extra steps to extract the data for analyses beyond Excel, and you
cannot open or read your data without that exact version of the Microsoft product. This
might seem like a reasonable trade off today, but how much scientific data was lost because
it was stored in Lotus 1-2-3 spreadsheets? Further, if you store your data in text files and
perform your analysis with script based software like R you are less likely to accidentally
delete or modify a cell or column of your raw data. You can import and export data from
Excel as ascii text files if needed. If you just cannot give up Excel, there is a package called
“xlsx” that will let you read data in directly from Excel.

8.3 Fitting Parameters Using Non-Linear Least Squares

Your first task for this laboratory is to complete Exercise 9.7 in Ellner and Guckenheimer
(2006a) Dynamic Models in Biology (Chapter 9, p. 297). The exercise reads as follows:

Download the data from Figure 9.5 from the book’s web site, and write a script
to find least-squares parameter estimates for V and K on the untransformed
scale (you should find that you duplicate the values above) and again using
power transformation with β = 0.5. Do your parameter estimates for β = 0.41
indicate that trial-and-error choice of β = 0.5 was close enough?

The full text of Chapter 9 is posted on the biol534 course website as is the EggRatio.dat
data set.

I believe that Ellner and Guckenheimer had in mind that you would actually write a
script to solve the least squares problem. This might be instructive, but R has a built in
algorithm for solving non-linear least squares problems called nls. We will use this function.
Please review the help file for this function.

In general, an nls call will look like the following fit = nls( model,data,starting.values).
When using nls, you must specify initial parameter values to try. Again, see the documen-
tation for more details as well as your previous course notes.

8.4 Exogenous Data

The second task of this lab is to create a model in which the dynamics are driven by
exogenous variables. For this task please use the Ross Sea data set posted on the class
website.

Lets start by creating a lotka-volterra predator-prey model to simulate predation dy-
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namics. Recall, that the equations for this model are

dN1

dt
= (µ− d)N1 − cN1N2 (8.1)

dN2

dt
= bcN1N2 − dN2 (8.2)

Please select a set of parameters for the nominal simulation.
Now lets imagine that our prey is a phytoplankton growing in the Ross Sea. We would

expect that its growth rate may depend on temperature. Jørgensen and Bendoricchio (2001)
provide several possible ways of modelling the effect of temperature, but here lets select a
relatively simple one, ea∗T . We will assume that a = 0.06933, which describes the non-linear
effect of increasing temperature on the growth rate. I recommend you plot this function for
a range of temperature values to see how the control function works. Given this, lets define
µ = µmax ∗ ea∗T .

Now you will need to use the spline function to interpolate values to use this in your
model. See the “Connecting Models to Data” lecture notes for how to do this. Then, see
if you can use a monod function to model the effect of light (PUR in the data file) on the
phytoplankton growth. How do these simulations compare to your nominal simulation?
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