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Figure 1

Canonical Ensemble
In microcanonical ensemble the system in its macrostate is defined by (N,V,E)
where E is the fixed energy or enregy may vary in the range E −∆ to E + ∆.
The number of microstates Ω(N,V,E) compatible with the macrostate is the
key to solve the thermodynamical problem and the determination of the number
is quite a formidable task. Physically too, the concept of fixed enregy is not
satisfactory because E can not be measured directly. in this situation, a system
can be introduced that corresponds to an ensemble where all the elements are
characterized by same temperature T . This can be done by taking a system in
contact with a heat reservoir of infinite heat capacity. If the reservoir consists
of an infinitely large number of replicas of the given system, then they together
form another type of ensemble called canonical ensemble. In canonical ensemble
the energy E is variable, it can take any values from 0 to ∞. The question is
that what is the probability of a system in the ensemble found to be in any of
the microstates characterized by the energy value Er at any time t?

Equilibrium between a system and a heat reservoir
Consider Figure 1. The system A(Er;T ) is immersed in a heat reservoir
A

′
(E

′

r;T ), much larger than the system. The system and the reservoir would
have a common temperature T but these energies vary from 0 to E(0)where

E(0) = Er + E
′

r (1)

and it is possible because the heat capacity of the reservoir is infinite.
Now

Er
E(0)

=

(
1− E

′

r

E(0)

)
� 1. (2)

The number of the states corresponding to E
′

rof the reservoir is denoted by
Ω

′
(
E

′

r

)
. This number depends upon the nature of the reservoir. The larger

the number of states avilavle to energy E
′

r, the greater is the probability of the
reservoir assuming E

′

r (and the system of assuming Er).
Thus

pr � Ω
′
(
E

′

r

)
≡ Ω

′
(
E(0) − Er

)
(3)
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which follows

ln Ω
′
(
E(0) − Er

)
= ln Ω

′
(
E(0)

)
− Er

∂ ln Ω
′

∂E′
r

. (4)

Hence

ln Ω
′
(
E

′

r

)
' C

′
+
(
E

′

r − E(0)
) ∂ ln Ω

′

∂E′
r

= C
′
− β

′
Er (5)

where

C
′

= ln Ω
′
(
E(0)

)
and β

′
≡ ∂ ln Ω

′

∂E′
r

(6)

β = β
′

= 1
kT in equilibrium.

So
pr ' exp

(
C

′
− βEr

)
= Ke−βEr ,K = exp

(
C

′
)

(7)

Normalizing we get
∑
pr = 1.∑

Pr = K
∑

e−βEr

=⇒ k =
1

e−βEr

So

Pr =
exp (−βEr)∑
r

exp (−βEr)
(8)

Various statistical quantities in the canonical ensemble
Average energy

U =

∑
r
Er exp (−βEr)∑
r

exp (−βEr)
(9)

= − ∂

∂β
ln

{∑
r

exp (−βEr)

}

Helmholtz free energy

A = U − TS (10)

whence follows

S = −
(
∂A

∂T

)
N,V

, P = −
(
∂A

∂V

)
N,T

, µ = −
(
∂A

∂N

)
V,T

(11)
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and

U = A+ TS

= A− T
(
∂A

∂T

)
N,V

= −T 2

[
∂

∂T

(
A

T

)]
N,V

(12)

=

[
∂ (A/T )

∂ (1/T )

]
N,V

=

[
∂ (A/KT )

∂ (1/KT )

]
N,V

=

[
∂ (A/KT )

∂β

]
N,V

.

From eqns (9) and (12) we have

− A

kT
= ln

{∑
r

exp (−βEr)

}
(13)

The eqn (13) constitutes the most fundamental result of the canonical en-
semble theory. Customarily we write this in the form

A (N,V, T ) = −kT ln QN (V, T ) (14)

where

QN (V, T ) =
∑
r

exp (−βEr) (15)

QN (V, T ) is referred to the partition function of the system. It’s considered
as the sum over all states. The dependence of QN (V, T ) on Nand V is through
Er. For the quantity A(N,V, T ) to be extensive, ln Q must be extensive. The
other thermodynamic quantities can be expressed as follows,

CV =

(
∂U

∂T

)
N,V

= −T
(
∂2A

∂T 2

)
N,V

(16)

G = A+ PV = A− V
(
∂A

∂V

)
N,T

= N

(
∂A

∂N

)
V,T

= Nµ (17)
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Now

P = −
(
∂A

∂V

)
N,T

= − ∂

∂V

[
−kT ln

{∑
r

exp (−βEr)

}]

=
1

β

∂

∂V

[
ln

{∑
r

exp (−βEr)

}]

= −

∑
r

∂Er

∂V exp (−βEr)∑
r

exp (−βEr)

=⇒ PdV = −
∑
r

PrdEr = −dU (18)

The quantity on the R.H.S of the eqn. (18) is clearly the change in the
internal energy of the system (in the ensemble) during a process that alters the
energy levels Er, pr unchanged. The left hand side then tells us that the volume
change dV provides an example of such a process where the pressure P is the
’force’ accompanying the process.

About entropy
pr = Q−1 exp (−βEr) (19)

〈ln pr〉 = − ln Q− β 〈Er〉
= β [A− 〈Er〉]

= β [A− U ] = −S
k

(20)

=⇒ S = −k 〈ln pr〉 = −k
∑
r

pr ln pr (21)

The eqn. (21) is an interesting one from which one may conclude

• If T = 0, the system is in its ground state, pr is 1 for this state. Es-
sentially S = 0. This is Nernst heat theorem or the Third law of
Thermodynamics.

• Vanishing entropy and perfect statistical order go together.

• Largeness of entropy and high degree of statistical disorder go together.

It may be pointed out that the formula (21) applies in the microcanonical en-
semble as well. For each member system of the ensemble, we have a group of Ω
no. of states, all occuring equally likely. Then pr = 1

Ω ,
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S = −k
Ω∑
r=1

1

Ω
ln

(
1

Ω

)
= k ln Ω (22)

Alternative expression for the partition function
If gi is the degenarcy of an energy state Ei, then

QN (V, T ) =
∑
i

gi exp (−βEi) . (23)

Therefore

pi =
gi exp (−βEi)∑
i gi exp (−βEi)

(24)

If the difference in the energy levels are small enough so that E can be
taken as continuous variable then p(E)dE is the probability of the system in
the ensemble having its energy lying between EandE + dE. Then

p(E)dE � exp (−βE) g (E) dE. (25)

Normalizing

p(E)dE =
exp (−βE) g (E) dE
∞∫
0

exp (−βE) g (E) dE

(26)

clearly

QN (V, T ) =

∞∫
0

exp (−βE) g (E) dE (27)

and the expectation value of a physical quantity f is

〈f〉 =

∑
i

f (Ei) g (i) e−βEi∑
i

f (Ei) g (i) e−βEi
→

∞∫
0

f (E) exp (−βE) g (E) dE

∞∫
0

exp (−βE) g (E) dE

(28)

From eqn. (27), if β > 0, the partition function Q (β) is just the lapcace
transform of the density of states g (E). We may therefore write inverse laplace
transforms of Q (β);

g (β) =
1

2πi

β
′
+i∞∫

β′−i∞

eβEQ (β) dβ
(
β

′
> 0
)

(29)

=
1

2π

∞∫
−∞

e

(
β
′
+iβ”

)
E
Q
(
β

′
+ iβ”

)
dβ” (30)
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