W Vortex Motion

I"‘dure

) [ntroduction

l yortex lines and Vortex tubes
) Rectilinear Vortex

y Circular Vortex

3.3.1  Vortex pair

3.3.2  Vortex doublet

| Infinite row of parallel rectilinear vortices

3.4.1 Single infinite row

3.4.2_ Infinite row of parallel rectilinear vortices (Karman Vortex Stre
. Examples

. Model Questions

D Introduction

It is well known that for irrotational motion the velocity vector q = (u,v,w) €a
resented in the form of the gradient of a velocity potential ¢ as

q = grad ¢
or, in other words, ‘
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The vorticity is defined to be a vector QQ = curl q, whose components are

The above components vanish when the conditions (1) are satisfied. Thus
tational motion when q = grad¢,
Q=curl grad $ =0.




is. it can be shown that eqy,...
C ely, if Q =0, th ith the aid of vector analysis, _ : q atigp,
onversely, i = (), then wi ocity potcntlal certainly bxig

. - ion. a vel
(1) will always hold. Thus, in irrotational motion

: tions of a fluid for whicp,
This chapter will consist of investigation of suchl m:)mc cuet. o e Fil Un;hc
vorticity vector Q is different from zero at least 1fl * | .
' ‘ f the fluid.

.
) ) . ' ex motions
consideration. We will call such motions as vort

T~
3.1 Vortex lines and Vortex tubes 4
A vortex line is a curve in the fluid such that its tangent a.t any pOinrl‘gi:C;:hc direq'mn

of the local vorticity. Therefore, the equations of a vortex line have the 10
S EZ_ o 2 (4)
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rticity vector €. Note that, the abovye

f the vo :
where €y, Qy, €, are the components 0 f the fluid bounded

equations are analogous to the equations for a streamlines. Portions © led
by vortex lines through every point of an infinitely small closed curves are ca lo)m:,(
filaments, or simply vortices. Vortex lines passing through any closed curve form a tu. i
surface, which is called a vortex tube. The fluid contained within such a tube constitutes
what is called a vortex-filament. Let 8S;, 8S, be two sections of a vone.x tube and let n,
and ny be the unit normals to these sections drawn outwards from the fluid between them,
Also, let 8S be the curved surface of the vortex tube. Then, AS = 8S; + 8S2 + &S = total
surface area of the element. Let AV be the total volume contained in AS. Then

| n.QdS:j divQdV =0,
AS AV
since div Q = 0. Thus

_[ n.Qds =

5S 58S

n.QdS+J' n.QdS =0

5S 5
At each point of 8S, n.Q = 0, since Q is tangential to the curved surface. Thus
(n1.Q)3S1 + (n3.Q)8S, = 0

approximately to the first order (using the mean value theorem of integral calculus). This
shows that In.QIdS is constant for every section 8S of the vortex tube, Its value is called
~ the strength of the vortex tube. A vortex tube whose strength is unity is called a unii
vortex tube.
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(1) Vortex lines and tubes move with the fujq,

ng O the surface S, it follows that,

Iy!

no — 1 )
Q=0,So the circulation I" around C is given

’ jr q'ds=js n.QdS = (.

| interval of ti :
. After an f time, the same fluig Particles form a new surface, say S'.

| ; Kelvin’s theore g .
: ccordlng to m, the circu] .
L A ation around S’ must also be zero. As this is

e for any S, the component of vortieit
ru Yy normal to every element of S’ must vanish,

- ving that S’ must lie on the surf:
ghowing t surface of the vortex tube -
' tubes MoOve with fluid. . Hence, vortex lines and vortex

(2) Vortex lines and tubes move with the fluid

1 Let C :e tarll)y cloc:lsed curve d[\.':lwn on the surface of the vortex tube containing an
| arfta S of th e urfe an . ﬂ?tfembraCIng the tube. As the vorticity vectors are everywhere
lying On the surface S, it follows that n.Q = 0. So the circulation " around C is given

by

J.a.ds=] n.aas-o.

After an interval of time, the same fluid particles form a new surface, say S’. According
to Kelvin’s theorem, the circulation around S' must also be zero. As this is true for any
S, the component of vorticity normal to every element of S’ must vanish, showing that
§' must lie on the surface of the vortex tube. Hence, vortex lines and vortex tubes move
with fluid.

(3) A vortex tube cannot originate or end within the fluid. It must either end
at a solid boundary or form a closed loop (a ‘vortex ring’).

Suppose S is any closed surface containing a volume V. Then
f n.qds= f, divadv =o. (5)

Equation (5) shows that the total strength of vortex tubes emerging from S is equal tc
hat entering S. This means that vortex lines and tubes cannot originate or terminate
t internal points in a fluid. They can only form closed curves or terminate o1

undaries.



i r all time.
(4) Strength of a vortex tube remains constant fo

and if S d :
If C is a closed curve embracing once the vortex tube €notes gy, -

- i round the 4
contained in C, then the circulation I' of the fluid velocity q a Vortex tuby )

defined as
r —] §C qu ”‘,

Then, by Stokes’ theorem
r:js n.qu. (7)

Equation (7) shows that I" is nothing but the strength of vortex tub.e \A;llthﬂsgl(-jface are,
S. Since for an inviseid fluid the circulation around any closed curve 1n the allll movmg
along with the fluid, remains constant in time, therefore strength of the vortex also remajp,

constant in time.

The above theorems are known as Helmholtz’s vortex theorems :

We shall assume that the fluid is a single-valued function of time only.

——

3.2 Rectilineér Vortex

—

Consider a single tube whose cross-section is a circle of radius a and with its axi
parallel to the axis of z surrounded by unbounded fluid. The motion is similar in all plane
parallel to xy and it has no velocity along the axis of z. By making the area contained withj;
the tube sufficiently small we see that the distribution producing such a flow must be unifor
along the z-axis. Such a distribution along the z-axis is called a uniform rectilinear or line
vortex. Thus if q = (u, v, w) be the velocity, then w = 0 and u, v are independent of z
If Q =(Q,, Qy, 2,) be the vorticity vector, then

ov Ou

Qx:O’Qyzo’Qz=5;”E' (8)
The velocity components u, v are related to the stream function y by
_ Oy _ Oy
U——Ey'— andv—a. (9)
Use of (9) in (8) gives
02 02
Q,=—F+2Y 10
ox2  py? (10



satisfies

11“]5.
62 2y
\y c';yz _{f)l,, on the vortex,
, out side the vortex. e

 P(r, ©) pe an?/ point outside the vortex. Since the moti ' .
onal, the velocity potential ¢ exists and on outside the vortex 18

aday b
ar r ae (|2)
nolds. © 0 being polar coordinates. Since, in the region out side the vortex v is harmonic
50 we get
L1ov 1oy
= 0. (13)

ar2 Yo T2 dee

If the motion is symmetric about the origin, y must be independent of 8. Then equation

1d( dy
rdr(r dr) 0

(13) reduc s to

giving
y=clogrc= coﬁstant. (14
Using the relation of ¢ and y éiven by (12) we get
¢ = - cb. (13
Thus the complex potential function w is given by
(1

w=¢+i\y'=—c9+iclogr=iclogz.

Let k be the circulation in the circuit enclosing the vortex. Then

K = jz"(-lﬁ)rde _2mc

0 r

so that

"y 9
2T



and hence w is given by

ik
w = E—Elog z. (1,

This is the complex potential due to a vortex of strength k placed at the origin. If the VOrte,
be placed at z; = xq + iy, instead of (0, 0), then the complex potential w has the form

ik
w=5;log(z—zo). (18)

Let P(z) = P(x, y) be another point in the fluid other than (x0, Yo)- Then distance rq betweey,
(X, ¥) and (xp, yp) is given by

g =(x—xp)2+(y-Yo)?- (19)

From (18), we see that the stream function v is given by

k
= —]1 .
vy st 0gry,
Thus,
Lo v _ W __k Y=Y
8y  ory Oy 2% . 28
and

Thus the magnitude of the velocity q is given by
k
27,

q=(u2 +v2)? =

This is the velocity at any point P(x, y) due to presence of a vortex of strength k ;
(X0, Yo)-
Note :

If there be any number of vertices of strength ks at z;, s =1, 2, 3, ..., then the compk
potential at any point z in the fluid is given by



[ 27 k"°8f2~z‘,
) .

|

ff

L nd the velocity components are given by

where

Note that the ex : .
pressions 2k.u, and 2kgv will consist of pairs of terms of the forms

k, (x, —x ) k
k —s r s , (x,—-x.)

Ty

and as such
2ksug = 0 and Ykgvg = 0.
Hence, regarding k as a mass, the center of gravity of the vortex system, viz.
2 ku oL 2k,
Yk, 2k,
remains stationary throughout the motion. Note that'if >k =0, the center (X, y) is at

X =

3.3 Circular Vortex

Let there be a single cylindrical vortex tube, whose cross-section is a circle of radius
a, surrounded by unbounded fluid.



of the motion 1s @ circle and the i
ne

The section of the vortex by tht‘-‘.PIa e n g%‘
may therefore be referred to as @ circular _ |
3.3.1 Vortex pair |

: g[hs K and k, at a dlSlanCe e

ices of stren . i ) Apy
of two vortic m. The point O divides AR in lhn' l

he syStC .
: : to the other Ty
. entirely due »and '-

hole 1S St -

vortices remain ahvays at the Same 4. O
: g 15
ular velocity about O which jg . g,
GC(j. 'h

Consider the case
A. B be their centers, O, the center of t
K, : k,. The motion of each vortex as a W

i wO
always perpendicular to AB. Hence the t
nd rotate with constant ang

from one another a , k )
. oly —— and —2 T
ctively r TO oby,
" : es at A and B are respe 27, 2nr tain .
velocities at the two vortices at A 0 "t

the velocity of the vortex A by the disy,
Stap,

\

angular velocity w of the system, we divide

AQ, where
k 2 r() 4

k, +ks

= k.?. AB:
k, +k

AO

Therefore, the angular velocity is given by

velocity of the vortex at A 1 k,+k, |
0 AO 2 e

If k,, ko be of the same sign, i.e. if the direction of rotation in the two vortices be the Sine

then O lies between A and B; otherwise O lies in AB or BA, produced. If k, = Ky,

K, at right angles to AB, Whigh
114 98

is at infinity. However, A, B move with equal velocities 5

remains fixed in direction. Such a combination of two equal and opposite vortices may i

called a vortex pair.

3.3.2 Vortex doublet

"Consider a vorlex pair, k at ae'® and — k at — ae'® in the complex Zz-plane where:
= x +iy. If we let a — 0 and k — o so that 2ak = p is a finite constant, we get a vortex
doublet of strength p inclined at an angle a to the x-axis.



e direction of the doublet is determined from the vortex of negative rotation to that

fp:*"""c rotation. The complex potential is
' | '
W = hlrp):;; {log(z — aeia ) - log(z + acia )
= liln"i—k"(’aeiul * a2e2‘:u o, 611 Sy oy B S8 I
a0 27 z 2722 7 T K ) - chzm.
[he stream function is y = _%c?cos(a - 0).

If, in particular, we take the vortex doublet to be at the origin and along the axis of y,

I sin O :
- 1f we put ;_n = Ub?, we obtain y = - U_b}rsm() which is the

we have Y = —

stream function for a circular cylinder of radius b moving with velocity U along the x-axis.

Thus the motion due to a circular cylinder is the snme as that due to a suitable vortex
doublet placed at the center, and with its axis perpendicular to the direction of motion.

3.4 Infinite row of parallel rectilinear vortices

3.4.1 Single infinite row

. Consider an infinite row of vortices each of strength k at the points 0, *a, +2a, ...
gfina, ... (as shown in figure 3.1).

y
K K K K K
i__Q \.’/ \T{) a 2a

| —2a —a

i | - Figure 3.1



Origin ie
. es nearest to the origin jg
rtices N

£1)vO

potential of the (2n e ik log(z — na)
: llf (z—-a)+ N 27
Wa * 211; logz+§ﬂlog

The complex

. ik
_1_k_log(z+a)+ o e g
+27T 27': g(z*n-

q
2232)..-(12—-n2a2)} '

3
=.ﬂ‘..]og{z(z2 ~a2)(Z ' a
% s A +—”—(—log{—.a2_22a2_ 2
" o Zz)(l __gf___)...(l-nzaz 27 T <ty
_.l__ —_—}]=-— -—2232 |
—2nlog{a( il ¢ we write

i so tha
The constant term may be omitted,

72
2 Y(1- 2 ) (1- 7 )}
L Zl-7 22a? nZa
wn=§;log " ) o
‘nfini ct in the form

Now, sin x can be expressed as an infinite produ

x2 __’.‘f._—)(l-— §22)°--
sinx=x(l—;;;)(1’22n2 n°mn 2]

i f(21),
Thus letting n — oo in (20), we get by virtue 0 (

ikl 109 1@)
=—1l0 sm( ’
W 21 g a (22

Consider the vortex at z = 0. Since its moton is due to the other vortices, the comple
velocity of the vortex at the origin is given by

. - ik (m . ;mz_ 1
d [ ik .z ik .3 (—-cot ——) =0,
"E{Elogsm? 2n]°gz}z=o 2n\ a A Ewmo

Thus the vortex at the origin is at rest. Similarly it can be shov\{n that the remaining Vortie
are also at rest. Thus the vortex row induces no velocity in itself.

To determine the stream function we note that

w(z) =9 tiy, W(z)=¢—iy
so that from (22)

21y =w(z)-w(zZ) = %log{sin%sin Tt_az_},

2

W= —k—logl(cosh 2ny cos 27“),
47 Jiixa a
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3

jues of y , we neglect the term cos 2_7‘_"
c Vﬂ ‘ ’
arg a a

b herefore along the streamlines \ = constant. Thys it
an cam lines are parallel to the row,
itr

e S "
" again, if vi, v2 are the complex velocities at the points z, 7 respectively

=4 ]ik . TZ d [
; Vi ¥y dz{2nlogs'n—7‘l_}7 —-——{—'-li-logsinltf‘-}
i ‘ =7

of'

we have

dz |\ 2n
; _ . 2TX
L nz ik  nz ik 28in
= o= COl —— ~ —COl ™ =~ — a
cosh —= - ¢cos
a a

which is purely imaginary and tends to zero when y tends to infinity. Thus the velocities
long the distant streamlines are parallel to the row but in opposite directions.

3.4.2 Infinite row of parallel rectilinear vortices (Karman Vortex
Street)

This consists of two parallel infinite rows of the same spacing, say a, but of opposite
; yortex strengths k and -k, so arranged that each vortex of the upper row is directly above

K K K K K
- 2a —a Q a 2a
i
i -K -K :’K
_3a/2 —al2 al2 3a/2

Figure 3.2



. row and vice-versa, Tak;
the mid point of the line joining two vortice of the lower king he

in the figure 3.2, the x-axjg

' ! = e axes as shown . ' )
configuration at time t = 0, we take th hich are at the distance b apart. At thig i"\t;,ng
“dng

midway between and parallel to the rows w [

sma+ ib, and those in the lower fow

the vortices in the upper row are at the point

the points (m+%)a - -;—ib, where m = 0, =1, £2, ..

ing section 1 gi
The complex potential at the instant t = 0, by the preceding sec given by

: ib
- , Y ik zc_(z_z+1_)_
w=-;—k1;logsmg(z——2—)+'2‘;l°gsma 2, &

If, the velocity of vortex at z =

N
(NJcS
=

Since neither row induces any velocity in 1(s€

be given by

Thus the lower row advances with velocity

V= itanhfc—b—,
2a a

and similarly the upper row advances with the same velocity. The rows will advance tt
distance a in time 1 = —3— and the configuration will be the same after this interval as at tf
initial instant.

Note :

In a Karman vortex street, under the influence of some operation, all or certain of t
vortices may experience small displacements. Then it is possible that with the passage
time the vortices will remain close to the positions which they would have had if they h
not been subject to displacements. We then say that the motion is stable. If, however, t

oA



dlSPmCed foHICEs (GIE 10 MY Away fiom the position ¢

orrespondi
he motion will be called unstable. A necessary condit; Ponding to unperturbed

qate. ¢ on of stability for the Karman's

Jortex street 18

cosh— bn )

a
50 that b= 0.281a.

ﬁustrative Solved Examples

—_—

Example 1
If
_ ax-—by oo ay+bx
X2 +y2’ o x2 +y?2 , W=0,
investigate the nature of motion of the liquid.
Solution :
Given
x> by _ay+bx >
u= x2+y2"v_x2+y2’w_0' (D
From (1),
ou a(x?+y?2)-2x(ax—by) ay?-—ax?+2bxy
ox (x2 +y2)2 T (x2 +y2)2
and
v sea(X? == 2y(ay+bx) ax2 —ay2 —2bxy
By (x2 +y2)2 (x2 +y2)2
We see that
ou  Ov
+—=0
ox oy

and hence the equation of continuity is satisfied by (1). Therefore (1) represents a two-
dimensional motion and hence vorticity components are given by

Q,=0,0,=0,Q, =7 -7 %




by2 — sz = Zaxy

From (1), s
au -b(x? +y2)*3§3)’£3" =7 +y?)?
S T
oy (x
and S
e
?xv o T 'yﬁiﬁ
‘ Qx=Oqu=O‘QZ O
onal.

showing that the motion is irrotatl

Example 2 : Focs gy beat o
Find the necessary and sufficient conditions that vortex lin y nght angles
the streamlines.
Solution :
Streamlines and vortex lines are given by
dx dy _dz
u v W |
and
dx _ dy _ 4z
Q, y 2, |

respectively. These will be at right angles, if
UQx = VQy = WQZ. (
But
oW v o _du_dw o _ov_du

9y oz° Y ez ox’ Tt 8x By |
Using (4), (3) may be written as

07

& & & & & & '
which is the necessary and sufficient condition that udx + vdy + wdz may be a perf
differential. So we may write



udx+de+WdZ=pd¢=u[i)gdx+_aEd od

s the necessary and sufficient conditions that vortex lines may be at right ang| th
- " angles to the

gream!in® ol

prample 3

When ;‘; infinite ll'llqmd contains two parallel, equal and opposite rectilinear vortices at
, distance 2b, prove that the streamlines relative to this system are given by the equation

X2 +(y-b)2 y
+==C,

lo
"XTa(y+b)? b

(he origin being the midpoint of the line joining the two vortices, taken as the y-axis.

Solution :

Let. there be two rectilinear vortices of strengths k and — k at P,(0, b) and P,(0, — b)
respectively. Thus PP, = 2b, origin being the midpoint of PP and y-axis being taker
along P,P,. Thus we have a vortex pair which will move with a uniform velocity k/2rP P
or k/f‘ﬂb perpendicular to the line PP, (ie. along the x-axis). To determine the streamline
relative to the vortices, we must impose a velocity on the given system equal and opposit

t

to the velocity k/4nb of motion of the vortex pair. Accordingly, we add a term 4kzb
T

the complex potential of the vortex pair. Note that

_i(ﬁ_)
dz\ 4nb )’

and hence the term added is justified. So, for the case under consideration, the compl!

potential is given by
PRI | < - oy 1K : kz
w—¢+1\p—————2nlog(z ib) ——znlog(z+1b)+-—-4nb.

Equating the imaginary parts, we have

_k 2 _nyz 1o K ) 2 1. K2
q;..4nlog[x +(y-b)2] 4nlog[x +(y+b) ]+4nb



C4n x2 +(y+b)2 b

Hence the required relative streamlines are given by vy

; 2 - )2
v l‘[Iogx Hy-D) +y}.

= constant, i.e..

)'.2+(y—b)2 y

lo o i
X2 +(y+b)2 p

=C.
Example 4

If n rectilinear vortices of the same strength k are Symmetrically arranged a;
generators of a circular cylinder of radius a in an infinite liquid, prove th

will move round the cylinder uniformly in time 8n?a%/(n —
any part, of the liquid.

at the vortices
1)k, and find the velocity of

Solution :

Let us take the origin as the center of the circle of radius a and the x-axis along th,

line © = 0. Suppose that n rectilinear vortices each of strength k be situated at pojp,,

=2 expH om 240, 1,8 s tidi lion the cirqumference of the-citéle; Then

complex potential due to these n vortices is given by

whas JK2 log(z—aexp 2 Him/n )
21 &~

3
I

n-1 .
_ ik _ 2 mim/n ____‘_k_| zZ" —an),
'2nHO(Z RCXPiRE 13 2 OB

m=

Now the fluid velocity q at any point out of all the n vortices is given by

ik zn!
2mz" —an

kn zn» -1
2wz —an

—

_dw

dz

a=|

Again the velocity induced at the point z = a, by the other vortices is given by the comple
potential
R |

ik
L nn.t n ______1 .....a
W _——znlog(z an) > og(z—a)



W—(:l\:=;knlog(z“" +z"la+ .- +zan +anl),
Hence
(@_’} =ik(n—l)+(n--2)+---+2+1_ik(n—l)
dz ),., 2T na 4 ma
or

. (dw'] k(n-=1)
=0

dz 4 ma
k(n-1) , :

so that u; =0 and vy = —,——. If q, and qg be the radial and transverse velocity

ma

k(n-=1)
components of the velocity at z = a, then we have ¢, = Oandqo= ", ., - Due to
symmetry of the problem, it follows that each vortex moves with the same transverse
. k(n-1) b e it i} 4L

velocity e Hence the required time T is given by

T 2an _ 8m2a?

“ k(n~1)  (n—-1)k
4 ta




