
Computational Statistics in R
Lab

Computer Science PG Study Material
Paper: CS-292 Module - II

Anupam Pattanayak1

Assistant Professor,
Department of Computer Science,

Raja N. L. Khan Women’s College (Autonomous),
Midnapore, West Bengal

April 11, 2020

1anupam.pk@gmail.com

ii

Contents

1 R - Introduction 1
1.1 Installing R in Ubuntu . 1

2 R - Basic Commands 5
2.1 Initialize a variable . 5
2.2 Add, Subtract, Product, Divide, Remainder Operations 6
2.3 Logical-OR, Logical-AND operations 7
2.4 Relational Operators . 7
2.5 Logarithm and Exponentiation 8
2.6 Basic Trigonometric Functions 8
2.7 Some Mathematical Utility Functions 9
2.8 Some Special Values . 9
2.9 Complex Numbers . 10
2.10 Working with Hexa-Decimal Numbers 10

3 R - Input and Output 11
3.0.1 Display into Standard Output Device 11
3.0.2 Read from Standard Input Device 12

iii

iv CONTENTS

1

R - Introduction

In class, we have seen usage of some preliminary commands in R. We will
revisit those and learn more commands and then do programming using R.

we will refer the book by Cotton1, and the book by Matloff2.

1.1 Installing R in Ubuntu
We use the R in Ubuntu. To install R, you may use either of the following:

I. Open Terminal. If you are not sure about what terminal means, then
just press Ctrl+Alt+T. It will open the terminal. Then type the fol-
lowing command:
sudo apt-get install r-base

$ sudo apt−get i n s t a l l r−base

Here, $ is the command promt of Linux. It automatically appears in
terminal. Do not type it explicitly while entering the above command.

II. Open Ubuntu Software Center. Search for r-base in search window
there. It will return a package with title GNU R statistical computation
and graphics system with subtitle r-base. Click on the install button
to install it.

Once the installation of R is complete, we can open it by entering the
command R in terminal, and it gives us something like below:

1Learning R - A Step by Step Functional Guide by Richard Cotton, Orielly
2The Art of R Programming- A Tour by Norman Matloff, No Starch Press

1

2 1. R - INTRODUCTION

$ R

R ve r s i on 3 . 0 . 2 (2013−09−25) −− " Fr i sbee S a i l i n g "
Copyright (C) 2013 The R Foundation f o r S t a t i s t i c a l Computing
Platform : x86_64−pc−l inux−gnu (64− b i t)

R i s f r e e so f tware and comes with ABSOLUTELY NO WARRANTY.
You are welcome to r e d i s t r i b u t e i t under c e r t a i n cond i t i on s .
Type ’ l i c e n s e () ’ or ’ l i c e n c e () ’ f o r d i s t r i b u t i o n d e t a i l s .

Natural language support but running in an Engl i sh l o c a l e

R i s a c o l l a b o r a t i v e p r o j e c t with many con t r i bu t o r s .
Type ’ c on t r i bu t o r s () ’ f o r more in fo rmat ion and
’ c i t a t i o n () ’ on how to c i t e R or R packages in pub l i c a t i o n s .

Type ’demo () ’ f o r some demos , ’ he lp () ’ f o r on−l i n e help , or
’ he lp . s t a r t () ’ f o r an HTML browser i n t e r f a c e to he lp .
Type ’ q () ’ to qu i t R.

>

R is a functional programming language. Like C is a procedural program-
ming language, Java is a object-oriented programming language, Prolog is a
logic programming language. R also supports procedural as well as object-
oriented programming. R uses interpreter for execution. That is, R does not
use compiler.

We will use the symbol > to mean R command prompt. To get help
about any command from the R command prompt, we use ?command-name.
For example, if we want to get help about mean, we can use the following
command for it.
> ?mean

It will produce output something like below.
mean package : base R

Documentation

Arithmet ic Mean

Desc r ip t i on :

1.1. INSTALLING R IN UBUNTU 3

Generic func t i on f o r the (trimmed) a r i thmet i c mean .

Usage :

mean(x , . . .)

Defau l t S3 method :
mean(x , tr im = 0 , na . rm = FALSE, . . .)

Arguments :

x : An R ob j e c t . Current ly the re are methods f o r numeric /
l o g i c a l

v e c t o r s and date , date−time and time i n t e r v a l ob j e c t s .
Complex vec to r s are a l lowed f o r trim = 0 , only .

tr im : the f r a c t i o n (0 to 0 . 5) o f ob s e rva t i on s to be trimmed
from

each end o f x be f o r e the mean i s computed . Values o f
tr im

out s id e that range are taken as the nea r e s t endpoint .

na . rm : a l o g i c a l va lue i nd i c a t i n g whether NA va lues should be
s t r i pped be f o r e the computation proceeds .

. . . : f u r t h e r arguments passed to or from other methods .

Value :

I f ’ tr im ’ i s ze ro (the d e f au l t) , the a r i thmet i c mean o f the
va lue s
in ’ x ’ i s computed , as a numeric or complex vec to r o f

l ength one .
I f ’ x ’ i s not l o g i c a l (coerced to numeric) , numeric (

i n c l ud ing
i n t e g e r) or complex , ’NA_r e a l_ ’ i s returned , with a warning

.

I f ’ tr im ’ i s non−zero , a symmetr ica l ly trimmed mean i s
computed

with a f r a c t i o n o f ’ tr im ’ ob s e rva t i on s de l e t ed from each
end

be f o r e the mean i s computed .
:

We can continue seeing the help documentation by pressing Enter or ↓ key,
or PgDn Key. Press q key to quit from this help page.

4 1. R - INTRODUCTION

We can also see the help by using the following.
> help ("mean")

To exit from R, give q() command.
> q ()

It will ask if we want to save workspace. Press y for yes, n for no, c for
cancel.

2

R - Basic Commands

We will see basic commands for integer operations. R treats every variable
as a vector object.

2.1 Initialize a variable

If we want to work with a scalar value, then R will treat as a vector of size
1. For example, if we want to initialize a variable a with value 10, then we
can do either of the following.

> a=10
>

> a<−10
>

Enter a in the command prompt to see the value of a. Observe the output
style. The output would be as follows:

> a
[1] 10
>

5

6 2. R - BASIC COMMANDS

2.2 Add, Subtract, Product, Divide, Remain-
der Operations

Let us now sum the two values as follows.
> a=20
> b=30
> a+b
[1] 50
>

Similary, we can use - for subtraction, ∗for multiplication, / for division.
However, to use remainder operator, we need to use %%.
> a+b
[1] 50
> a−b
[1] −10
> a∗b
[1] 600
> b/a
[1] 1 . 5
> b%%a
[1] 10
>

For floating-point operations, we can initialize and use the operators +,
-, ∗, /, %% as shown above, for the integer values. We show a sample below.
> x=10.5
> y=30.25
> x+y
[1] 40 .75
> x%%y
[1] 10 .5
> y%%x
[1] 9 .25
>

To compute powers like x3, x4, we use ôperator, as illustrated below.
> x=3
> x^3
[1] 27

2.3. LOGICAL-OR, LOGICAL-AND OPERATIONS 7

> x^4
[1] 81
>

2.3 Logical-OR, Logical-AND operations
We use || for logical-OR, && for logical-AND operation. This is shown below.
Observe the outputs.

> x=8
> y=0
> x | | y
[1] TRUE
> x&&y
[1] FALSE
>

2.4 Relational Operators
We use == for equality, != for inequality, > for greater than, <= for greater
equal to, < for less than, and <= for less equal to relations. See the usage
off these operators.

> m=5
> n=9
> m==n
[1] FALSE
> m!=n
[1] TRUE
> m>n
[1] FALSE
> m<n
[1] TRUE
> m<=n
[1] TRUE
>

8 2. R - BASIC COMMANDS

2.5 Logarithm and Exponentiation
we use log() for natural logarithm (base e), log2() for logarithm to the base
2, and log10() for logarithm to the base 10. See the following example to
see these commands. hown below. Observe the outputs.
> x=8
> log (x)
[1] 2 .079442
> log2 (x)
[1] 3
> log10 (10)
[1] 1
>

We use exp(x) to compute ex. See the usage of exp(x) in the following.
> exp (3)
[1] 20 .08554
> exp (1)
[1] 2 .718282
>

2.6 Basic Trigonometric Functions
we use sin(θ) for computing Sine function. Similarly, we use cos(θ) for
computing Cosine function. See the following example.
> s in (0)
[1] 0
> cos (0)
[1] 1
>

we use asin(θ) for computing Sin−1(θ). Similarly, we use acos(θ) for
computing Cos−1(θ). Now, look at the following example.
> acos (cos (0))
[1] 0
> as in (s i n (1))
[1] 1
>

2.7. SOME MATHEMATICAL UTILITY FUNCTIONS 9

2.7 Some Mathematical Utility Functions
Here, we show the usage of some utility functions such as sqrt() for computing
square root, abs() for computing absolute value, floor(x) to compute largest
integer less than x, ceiling(y) to compute smallest integer greater than y,
and round(z) to round off z.
> sqr t (90)
[1] 9 .486833
> sq r t (64)
[1] 8
> sq r t (−1)
[1] NaN
Warning message :
In sq r t (−1) : NaNs produced
> abs (−1)
[1] 1
> abs (−1.5)
[1] 1 . 5
> f l o o r (1 . 5)
[1] 1
> c e i l i n g (1 . 5)
[1] 2
> round (1 . 6 7)
[1] 2
>

2.8 Some Special Values
Did you notice the output of sqrt(-1) in the previous section? It was NaN.
It stands for Not a Number. Some operations does not yield a number, NaN
used to represent that scenario.

Inf and -Inf are used to denote ∞ and −∞.
pi is used to denote π. That is, it has the value 22

7 .
Sometimes, NULL is used to represent no value.
Now, look at the at the following output instances to get these values.

> sqr t (−1)
[1] NaN
Warning message :
In sq r t (−1) : NaNs produced
> 1/0
[1] I n f
> 0− I n f

10 2. R - BASIC COMMANDS

[1] −I n f
> Inf−I n f
[1] NaN
> pi
[1] 3 .141593
>

2.9 Complex Numbers
You might wonder by now, if we can work with complex numbers. Yes, we
can work with complex numbers. See the following commands.
> x=5+2i
> x
[1] 5+2 i
> pr in t (x)
[1] 5+2 i
> y=5−2 i
> x∗y
[1] 29+0 i
> > c l a s s (x)
[1] " complex "
>

2.10 Working with Hexa-Decimal Numbers
We can do some basic operations with hexa-decimal numbers. Prefix 0X or
0x is used before the hexa-decimal number. Following example shows the
use of this hexa-decimal notaton.
> 0Xf
[1] 15
> 0x10
[1] 16
> 0x10+0xf
[1] 31

3

R - Input and Output

Did you notice the use of print(x) to print value of a complex number x in
the last chapter?

Standard input device means keyboard, and standard output device means
monitor. Remember, in C proggramming we used to write the statement #in-
clude<stdio.h>, which provides access to various input and output related
library functions associated with standard input device and output device.

3.0.1 Display into Standard Output Device
Well, print() is the function to display values or a string. For example,
we use print() to display value of an object and a string in the following
example.
> pr in t (" Raja N. L . Khan Women’ s Co l l ege ")
[1] " Raja N. L . Khan Women’ s Co l l ege "
> m=2020
> pr in t (m)
[1] 2020
> pr in t (m)
[1] 2020
>

We can also used write() to display into standard output device, that is
monitor. Although, more appropriate use of write() is in writting output
to file. To write output in standard output device, use "" as the second
argument of write(). Look at the following example.
> wr i t e (" h e l l o " , " ")
h e l l o
> x=2020

11

12 3. R - INPUT AND OUTPUT

> wr i t e (x , " ")
2020
>

To display multiple objects (or, single object), we can use cat() command.
cat stands for concatenation. This is best used to concatenate two objects and
then to write to file. If file is not mentioned, by default cpncatenated output
is redirected to standar output device. We can use separator to separate out
objects. We will see working with files later on. Now, look at the following
example.
> cat (x)
2020>
> cat (x , " ")
2020 > 5
[1] 5
> x
[1] 2020
> y=2030
> cat (x , y)
2020 2030>
>

3.0.2 Read from Standard Input Device
We can use scan(), or readline(), or readLines() for reading from standard
output device or some file. By default, whatever read in this way, is treated
as string. See the usage of these functions in the following example.
> msg<−r e ad l i n e (" Enter a number : ")
Enter a number : 5
> msg
[1] " 5 "
> ? r e ad l i n e ()
> ? scan ()
> n<−scan ()
1 : 5
2 : 55
3 : 555
4 :
Read 3 items
> n
[1] 5 55 555
> n<−scan (, n=1)

13

1 : 5
Read 1 item
> n
[1] 5
> n<−scan (" s td in " ,n=1)
5
Read 1 item
> m<−readLines (" s td in " ,n=1)
50
> m
[1] " 50 "
>

Observe the outputs closely. We use n=1 to indicate that only one value
is to be read from keyboard. When we did not give n=1 in the statement
n<-scan(), then it did not stop after reading one value, it actually continued
to read for vector. However, we can force to read just one value by pressing
Enter key again instead of giving another input.

	R - Introduction
	Installing R in Ubuntu

	R - Basic Commands
	Initialize a variable
	Add, Subtract, Product, Divide, Remainder Operations
	Logical-OR, Logical-AND operations
	Relational Operators
	Logarithm and Exponentiation
	Basic Trigonometric Functions
	Some Mathematical Utility Functions
	Some Special Values
	Complex Numbers
	Working with Hexa-Decimal Numbers

	R - Input and Output
	Display into Standard Output Device
	Read from Standard Input Device

