## Lower Bound Theory(Decision Tree)

Lower Bound Theory Concept is based upon the calculation of minimum time that is required to execute an algorithm is known as a lower bound theory or Base Bound Theory.

Lower Bound Theory uses a number of methods/techniques to find out the lower bound.
Aim: The main aim is to calculate a minimum number of comparisons required to execute an algorithm.

## Techniques:

The techniques which are used by lower Bound Theory are:

1. Comparisons Trees.
2. Oracle and adversary argument
3. State Space Method

## 1. Comparison trees:

In a comparison sort, we use only comparisons between elements to gain order information about an input sequence (a1; a2......an).

Given $\mathrm{a}_{\mathrm{i}}, \mathrm{a}_{\mathrm{j}}$ from $\left(\mathrm{a}_{1}, \mathrm{a}_{2} \ldots . . \mathrm{a}_{\mathrm{n}}\right)$ We Perform One of the Comparisons

- $a_{i}<a_{j}$ less than
- $a_{i} \leq a_{j}$ less than or equal to
- $a_{i}>a_{j}$ greater than
- $a_{i} \geq a_{j}$ greater than or equal to
- $a_{i}=a_{j}$ equal to

To determine their relative order, if we assume all elements are distinct, then we just need to consider $\mathrm{a}_{\mathrm{i}} \leq \mathrm{a}_{\mathrm{j}}{ }^{\prime}=$ ' is excluded $\&, \geq, \leq,>,<$ are equivalent.

Consider sorting three numbers $\mathrm{a} 1, \mathrm{a} 2$, and a 3 . There are $3!=6$ possible combinations:

1. (a1, a2, a3), (a1, a3, a2),
2. (a2, a1, a3), (a2, a3, a1)
3. (a3, a1, a2), (a3, a2, a1)

The Comparison based algorithm defines a decision tree.

## Decision Tree:

A decision tree is a full binary tree that shows the comparisons between elements that are executed by an appropriate sorting algorithm operating on an input of a given size. Control, data movement, and all other conditions of the algorithm are ignored.

In a decision tree, there will be an array of length $n$.
So, total leaves will be n! (I.e. total number of comparisons)
If tree height is $h$, then surely

```
n! \leq2n (tree will be binary)
```

Taking an Example of comparing a1, a2, and a3.
Left subtree will be true condition i.e. $a_{i} \leq a_{j}$
Right subtree will be false condition i.e. $a_{i}>a_{j}$


So from above, we got
$\mathrm{N}!\leq 2^{\mathrm{n}}$
Taking Log both sides
$\log n!<=h \log 2$
$\mathrm{h} \log 2>=\log \mathrm{n}!$
$\mathrm{h}>=\log 2[1,2,3 \ldots . \mathrm{n}]$
$\mathrm{h}>=\log _{2} 1+\log _{2} 2+\log _{2} 3+\ldots \ldots . .+\log _{2} n$
$\mathrm{h}>=\sum_{i=1}^{n} \log _{2} i$
$\mathrm{h}>=\int_{i}^{n} \log _{2} i-1 d i$
$\mathrm{h}>=\log _{2} i \cdot x^{0} \int_{1}^{n}-\int_{1}^{n} \frac{1}{i} \mathrm{xidi}$
$\mathrm{h}>=\mathrm{n} \log _{2} n-\int_{1}^{n} 1 d i$
$\mathrm{h}>=\mathrm{n} \log _{2} n-\mathrm{i} \int_{1}^{n}$
$\mathrm{h}>=\operatorname{nlog}_{2} n-\mathrm{n}+1$
ignoring the constant terms
$\mathrm{h}>=\operatorname{nlog}_{2} n$
$\mathrm{h}=\pi \mathrm{n}(\log \mathrm{n})$

## Comparison tree for Binary Search:

Example: Suppose we have a list of items according to the following Position:

1. $1,2,3,4,5,6,7,8,9,10,11,12,13,14$
$\operatorname{Mid}=\left(\frac{1+14}{2}\right)=\frac{15}{2}=7.5=7$

| $1,2,3,4,5,6$ |  | $8,9,10,11,12,13,14$ |  |
| :---: | :---: | :---: | :---: |
| Mid $=\left(\frac{1+6}{2}\right)=\frac{7}{2}=3.5=3$ | $4,5,6$ | $8,9,10$ | $12,13,14$ |
| 1,2 | Mid $=\left(\frac{8+14}{2}\right)=\frac{22}{2}=11$ |  |  |
| Mid $=\left(\frac{1+2}{2}\right)=\frac{3}{2}=1.5=1$ | Mid $=\left(\frac{4+6}{2}\right)=\frac{10}{2}=5$ | Mid $=\left(\frac{8+10}{2}\right)=\frac{18}{2}=9$ | Mid $=\left(\frac{12+14}{2}\right)=\frac{26}{2}=13$ |

And the last midpoint is:
$2,4,6,8,10,12,14$
Thus, we will consider all the midpoints and we will make a tree of it by having stepwise midpoints.

According to Mid-Point, the tree will be:


Step1: Maximum number of nodes up to $k$ level of the internal node is $2^{\mathrm{k}}-1$
For Example

```
    2k-1
    23-1= 8-1=7
Where k = level=3
```

Step2: Maximum number of internal nodes in the comparisons tree is $n$ !
(Here Internal Nodes are Leaves.)
Step3: From Condition $1 \&$ Condition 2 we get

```
N! \leq 2k-1
    14<15
    Where N = Nodes
```

Step4: Now, $\mathrm{n}+1 \leq 2^{\mathrm{k}}$
Here, Internal Nodes will always be less than $2^{\mathrm{k}}$ in the Binary Search.

## Step5:

```
\(\mathrm{n}+1<=2^{\mathrm{k}}\)
    \(\log (n+1)=k \log 2\)
    k >=
    \(\mathrm{k}>=\log _{2}(\mathrm{n}+1)\)
```


## Step6:

1. $\mathrm{T}(\mathrm{n})=\mathrm{k}$

## Step7:

$\mathrm{T}(\mathrm{n}) \quad>=\log _{2}(\mathrm{n}+1)$

Here, the minimum number of Comparisons to perform a task of the search of $n$ terms using Binary Search

