
Lower Bound Theory(Decision Tree)

Lower Bound Theory Concept is based upon the calculation of minimum time that is required to

execute an algorithm is known as a lower bound theory or Base Bound Theory.

Lower Bound Theory uses a number of methods/techniques to find out the lower bound.

Aim: The main aim is to calculate a minimum number of comparisons required to execute an

algorithm.

Techniques:

The techniques which are used by lower Bound Theory are:

1. Comparisons Trees.
2. Oracle and adversary argument
3. State Space Method

1. Comparison trees:

In a comparison sort, we use only comparisons between elements to gain order information about

an input sequence (a1; a2......an).

Given ai,aj from (a1, a2.....an)We Perform One of the Comparisons

• ai < aj less than
• ai ≤ aj less than or equal to
• ai > aj greater than
• ai ≥ aj greater than or equal to
• ai = aj equal to

To determine their relative order, if we assume all elements are distinct, then we just need to

consider ai ≤ aj '=' is excluded &, ≥,≤,>,< are equivalent.

Consider sorting three numbers a1, a2, and a3. There are 3! = 6 possible combinations:

1. (a1, a2, a3), (a1, a3, a2),
2. (a2, a1, a3), (a2, a3, a1)
3. (a3, a1, a2), (a3, a2, a1)

The Comparison based algorithm defines a decision tree.

Decision Tree:

A decision tree is a full binary tree that shows the comparisons between elements that are

executed by an appropriate sorting algorithm operating on an input of a given size. Control, data

movement, and all other conditions of the algorithm are ignored.

In a decision tree, there will be an array of length n.

So, total leaves will be n! (I.e. total number of comparisons)

If tree height is h, then surely

 n! ≤2n (tree will be binary)

Taking an Example of comparing a1, a2, and a3.

Left subtree will be true condition i.e. ai ≤ aj

Right subtree will be false condition i.e. ai >aj

 YES NO

 YES NO YES NO

 YES NO YES NO

So from above, we got

N! ≤2n

Taking Log both sides

 a1<a2

a2<a3 a1<a3

<a3

a1<a3 1,2,

3
2,1,

3

a2<a3

1,3,

2

3,1,

2

2,3,

1

3,2,

1

log n! <= h log2

h log2 >=log n!

h >= log2 [1,2,3….n]

h>=log2 1 +log2 2+log2 3+……..+log2 𝑛

h>=∑ log2 𝑖𝑛
𝑖=1

h>=∫ log2 𝑖 − 1 𝑑𝑖
𝑛

𝑖

h>=log2 𝑖 .𝑥0 ∫ −
𝑛

1
∫

1

𝑖

𝑛

1
xi di

h>=n log2 𝑛 -∫ 1 𝑑𝑖
𝑛

1

h>=n log2 𝑛 -i∫
𝑛

1

h>= nlog2 𝑛 –n+1

ignoring the constant terms

h>= nlog2 𝑛

h=π n(log n)

Comparison tree for Binary Search:

Example: Suppose we have a list of items according to the following Position:

1. 1,2,3,4,5,6,7,8,9,10,11,12,13,14

Mid=(
1+14

2
)=

15

2
=7.5=7

1,2,3,4,5,6 8,9,10,11,12,13,14

Mid = (
1+6

2
)=

7

2
 = 3.5 =3 Mid = (

8+14

2
) =

22

2
 = 11

1,2 4,5,6 8,9,10 12,13,14

Mid = (
1+2

2
) =

3

2
 = 1.5 =1 Mid = (

4+6

2
) =

10

2
 = 5 Mid = (

8+10

2
) =

18

2
 = 9 Mid = (

12+14

2
) =

26

2
 = 13

And the last midpoint is:

2, 4, 6, 8, 10, 12, 14

Thus, we will consider all the midpoints and we will make a tree of it by having stepwise

midpoints.

According to Mid-Point, the tree will be:

Step1: Maximum number of nodes up to k level of the internal node is 2k-1

For Example

 2k-1

 23-1= 8-1=7

Where k = level=3

Step2: Maximum number of internal nodes in the comparisons tree is n!

(Here Internal Nodes are Leaves.)

Step3: From Condition1 & Condition 2 we get

N! ≤ 2k-1

 14 < 15

 Where N = Nodes

Step4: Now, n+1 ≤ 2k

Here, Internal Nodes will always be less than 2k in the Binary Search.

7

3 1

1

1 5 9 1

3

2 4 6 8 1

0

1

2

1

4

Step5:

n+1<= 2k

 Log (n+1) = k log 2

 k >=

 k >=log2(n+1)

Step6:

1. T (n) = k

Step7:

T (n) >=log2(n+1)

Here, the minimum number of Comparisons to perform a task of the search of n terms using

Binary Search

	Lower Bound Theory(Decision Tree)
	Techniques:
	1. Comparison trees:
	Comparison tree for Binary Search:

