
Lower Bound Theory(Decision Tree) 

Lower Bound Theory Concept is based upon the calculation of minimum time that is required to 

execute an algorithm is known as a lower bound theory or Base Bound Theory. 

Lower Bound Theory uses a number of methods/techniques to find out the lower bound. 

Aim: The main aim is to calculate a minimum number of comparisons required to execute an 

algorithm. 

Techniques: 

The techniques which are used by lower Bound Theory are: 

1. Comparisons Trees. 
2. Oracle and adversary argument 
3. State Space Method 

1. Comparison trees:  

In a comparison sort, we use only comparisons between elements to gain order information about 

an input sequence (a1; a2......an). 

Given ai,aj from (a1, a2.....an)We Perform One of the Comparisons 

• ai < aj       less than 
• ai ≤ aj       less than or equal to 
• ai > aj       greater than 
• ai ≥ aj       greater than or equal to 
• ai = aj       equal to 

To determine their relative order, if we assume all elements are distinct, then we just need to 

consider ai ≤ aj '=' is excluded &, ≥,≤,>,< are equivalent. 

Consider sorting three numbers a1, a2, and a3. There are 3! = 6 possible combinations:  

1. (a1, a2, a3), (a1, a3, a2),   
2. (a2, a1, a3), (a2, a3, a1)   
3. (a3, a1, a2), (a3, a2, a1)   

The Comparison based algorithm defines a decision tree. 

 

 



Decision Tree:  

A decision tree is a full binary tree that shows the comparisons between elements that are 

executed by an appropriate sorting algorithm operating on an input of a given size. Control, data 

movement, and all other conditions of the algorithm are ignored. 

In a decision tree, there will be an array of length n. 

So, total leaves will be n! (I.e. total number of comparisons) 

If tree height is h, then surely 

    n! ≤2n (tree will be binary) 

Taking an Example of comparing a1, a2, and a3. 

Left subtree will be true condition i.e. ai ≤ aj 

Right subtree will be false condition i.e. ai >aj 
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So from above, we got  

N! ≤2n    

Taking Log both sides 
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ignoring the constant terms 
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Comparison tree for Binary Search:  

Example: Suppose we have a list of items according to the following Position: 

1. 1,2,3,4,5,6,7,8,9,10,11,12,13,14   
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And the last midpoint is: 

2,  4,  6,  8,  10, 12, 14   

Thus, we will consider all the midpoints and we will make a tree of it by having stepwise 

midpoints.  

According to Mid-Point, the tree will be: 

                                                                     

                                                        

                                                                                                                   

 

 

   

 

 

Step1: Maximum number of nodes up to k level of the internal node is 2k-1 

For Example 

 2k-1 

 23-1= 8-1=7 

Where k = level=3 

Step2: Maximum number of internal nodes in the comparisons tree is n! 

(Here Internal Nodes are Leaves.) 

Step3: From Condition1 & Condition 2 we get 

N! ≤ 2k-1 

 14 < 15 

 Where N = Nodes 

Step4: Now, n+1 ≤ 2k 

Here, Internal Nodes will always be less than 2k in the Binary Search. 
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Step5: 

n+1<= 2k 

   Log (n+1) = k log 2 

 k >=   

  k >=log2(n+1) 

Step6: 

1. T (n) = k   

Step7: 

T (n) >=log2(n+1) 

Here, the minimum number of Comparisons to perform a task of the search of n terms using 

Binary Search  
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