
Algorithm Lab With C
in Linux

Graph Traversal: BFS, DFS

Anupam Pattanayak1

M.C.A., M. Tech.
Assistant Professor,

Department of Computer Science,
Raja N. L. Khan Women’s College (Autonomous),

Midnapore, West Bengal - 721102

April 15, 2020

1anupam.pk@gmail.com

2

Contents

1 Graph Traversal Algorithms 1
1.1 Graph Representation . 2
1.2 Depth First Search . 3
1.3 Breadth First Search . 6

3

4 CONTENTS

1

Graph Traversal Algorithms

Hopefully, you have implemeted the previously given programs on quick sort,
randomized quick sort, and heap sort without any difficulty. Now, we will
see implementation of graph traversal algorithms.

Graph is a very important data structure. Many real life scenarios are
best described by graph data structure. You must have studied graph in
data structure course. Remember, a graph G is defined by G (V, E) where
V is the set of vertices and E is the set of edges. Consider the follow-
ing graph in figure 1.1. Here, V = {A, B, C, D, E, F, G, H}, and E =

A

B C

D E F G H

Figure 1.1: A Graph

{AB, AC, AF, BD, BE, CF, CG, CH}. Here the edges are bidirectional. Two
vertices X and Y are said to be adjacent if there is an edge between vertices
X and Y.

1

2 1. GRAPH TRAVERSAL ALGORITHMS

1.1 Graph Representation
For programming with graphs, we need to use standard representations of
graph. In general, a graph can be represented in two ways:

I. Adjacency Matrix representation

II. Adjacency List representation

To represent, G (V, E) using adjacency matrix representation, a binary ma-
trix M of order |V | × |V | is used.

Mi,j =

1, if there is an edge between vertx i and vertex j
0, otherwise

Adjacency list representation uses linked lists to represent a graph. Each of
these representations has it’s own advatages and disadvatages. In general, if
the graph is sparse, then adjacency list is prefered. Also, if the graph is mod-
erately huge, then adjacency list is preferable. Whereas adjacency matrix is
better choice if the graph is dense. Please refer any standard text book
on data structure for more on this important topic: graph representation.
Choice of proper graph representation has a huge impact on the performance
of implementation of graph based applications.

We will use adjacency matrix representation as it is simple to implement.
For the graph 1.1, we have 8 vertices, and the corresponding adjacency ma-
trix M8×8 is shown below.

M8×8 =



0 1 1 0 0 1 0 0
1 0 0 1 1 0 0 0
1 0 0 0 0 1 1 1
0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0



Note that it’s symmetric matrix. If the graph is undirected graph, then
we will get the adjacency matrix as symmetric. If the given graph is weighted

1.2. DEPTH FIRST SEARCH 3

graph, then we replace the 1’s with the weights of the edges.

1.2 Depth First Search
Depth First Search (DFS), and Breadth First Search (BFS) are the graph
traversal algorithms. These two algorithms are widely used in many appli-
cations. To traverse a graph, we need to choose a starting vertex or sorce
vertex. We begin traversing graph nodes from this source node and continue
traversing the remaining nodes till all the vertices are visited. In DFS, the
vertex nodes are visited depth-wise. The stack data structure is used in DFS.
Whenever a new vertex is visited, it’s adjacent vertices are pushed onto the
stack. Next node to be visited is popped from the stack. This continues untill
the stack becomes empty.

While implementing the DFS, we will input the number of vertices and
adjacency matrix of the graph. Then, we will also give the starting vertex
for traversal. It will be helpful if we provide the adjacency matrix input as
redirected input instead of typing the matrix elements from keyboard every
time we run the program. Following program shows the C program for DFS.

/∗ C program f o r DFS, d f s1 . c ∗/

#inc lude <s t d i o . h>

i n t a [1 5] [1 5] ;
i n t s tack [1 5] , top=−1;
i n t v i s i t e d [1 5] ;

void d f s (int , i n t) ;
void push (i n t) ;
i n t pop () ;

i n t main () {
i n t n , s r c ;
i n t i , j ;

p r i n t f (" \n Enter Number o f Ve r t i c e s in Graph : ") ;
s can f ("%d" ,&n) ;
p r i n t f (" \n Enter Adjacency Matrix o f the Graph : ") ;
f o r (i =0; i<n ; i++)

f o r (j =0; j<n ; j++)
scan f ("%d" ,&a [i] [j]) ;

p r i n t f (" \nn=%d " ,n) ;

4 1. GRAPH TRAVERSAL ALGORITHMS

p r i n t f (" \n Adjacency Matrix : ") ;
f o r (i =0; i<n ; i++) {

p r i n t f (" \n ") ;
f o r (j =0; j<n ; j++)

p r i n t f ("%5d" , a [i] [j]) ;
}

f o r (i =0; i<n ; i++)
v i s i t e d [i]=0;

p r i n t f (" \n Enter The Source Vertex , in terms o f index : \n ") ;
s can f ("%d" ,& s r c) ;

p r i n t f (" \n node v i s i t order : ") ;
d f s (src , n) ; /∗ c a l l d f s () ∗/

return 0 ;
}

void d f s (i n t src , i n t n) { /∗ DFS ∗/
i n t i , k ;

push (s r c) ;
v i s i t e d [s r c]=1;
k=pop () ;
i f (k!=−1)
p r i n t f (" %d " , k) ;

whi l e (k!=−1) {
f o r (i =0; i<n ; i++)

i f ((a [k] [i] !=0)&&(v i s i t e d [i]==0)) {
push (i) ;
v i s i t e d [i]=1;

}
k=pop () ;
i f (k!=−1)

p r i n t f (" %d " , k) ;
}

f o r (i =0; i<n ; i++)
i f (v i s i t e d [i]==0)

d f s (i , n) ;
}

void push (i n t num) { /∗ push in to s tack ∗/
i f (top==14)

p r i n t f (" Stack over f l ow ") ;
e l s e

1.2. DEPTH FIRST SEARCH 5

s tack [++top]=num;
}

i n t pop () { /∗ pop from stack ∗/
i n t k ;
i f (top==−1)

re turn −1;
e l s e {

k=stack [top−−];
r e turn k ;

}
}

Hopefully, you have typed the program correctly and now it is the time
for compilation and execution.

Before that, few words about input. It is really a test of patience to
enter the adjacency matrix from keyboard manually everytime we execute
the program. Particularly, it’s very annoying when we are not getting correct
output and have to run several times while debugging. So, we will redirect
the input from a text file. We store all the inputs in a text file named
graph_ip1.txt as follows.

8
0 1 1 0 0 1 0 0
1 0 0 1 1 0 0 0
1 0 0 0 0 1 1 1
0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0
0

First input is the number of vertices in input graph. Next is the 8 × 8
adjacency matrix of graph of figure 1.1. Last number is the source vertex
from where graph traversal is to begin. The output is shown next.

Now, we compile and execute the program. A sample output correspond-
ing to the graph shown in figure 1.1 is given next.

6 1. GRAPH TRAVERSAL ALGORITHMS

$ gcc b f s1 . c
$. / a . out < graph_ip1 . txt

Enter Number o f V e r t i c e s in Graph :
Enter Adjacency Matrix o f the Graph :

n=8
Adjacency Matrix :

0 1 1 0 0 1 0 0
1 0 0 1 1 0 0 0
1 0 0 0 0 1 1 1
0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0

Enter The Source Vertex , in terms o f index :

node v i s i t order : 0 5 2 7 6 1 4 3 $

Check if the output is correct.
To run this program on another graph, consider the following directed

graph in figure 1.2.

S

B

C

D

E

F

H

G

1

2

3

5

3

7

1

4

4

1

1

Figure 1.2: Another Graph

Create the adjacency matrix of this graph and test the program execution
on it. Note that, it’s directed graph. So, be carefule while creating the
adjacency matrix. It will not be symmetrix matrix.

1.3. BREADTH FIRST SEARCH 7

1.3 Breadth First Search

In BFS, nodes of the graph are traversed breadth wise. That is, nodes are
visited level-wise from the source node. Here, queue data structure is used.

One C program that implements BFS is shown next.

/∗ C program f o r BFS, b f s1 . c ∗/

#inc lude <s t d i o . h>

i n t a [1 5] [1 5] ;
i n t q [1 5] , f r o n t =−1, r ea r =−1;
i n t v i s i t e d [1 5] ;

void b f s (int , i n t) ;
void i n s e r t (i n t) ;
i n t d e l e t e () ;

i n t main () {
i n t n , i , j , s r c ;

p r i n t f (" \n Enter Number o f Ve r t i c e s in Graph : ") ;
s can f ("%d" ,&n) ;
p r i n t f (" \n Enter Adjacency Matrix o f the Graph : ") ;
f o r (i =0; i<n ; i++)

f o r (j =0; j<n ; j++)
scan f ("%d" ,&a [i] [j]) ;

p r i n t f (" \nn=%d " ,n) ;
p r i n t f (" \n Adjacency Matrix : ") ;
f o r (i =0; i<n ; i++) {

p r i n t f (" \n ") ;
f o r (j =0; j<n ; j++)

p r i n t f ("%5d" , a [i] [j]) ;
}

f o r (i =0; i<n ; i++)
v i s i t e d [i]=0;

p r i n t f (" \n Enter The Source Vertex , in terms o f index : \n ") ;
s can f ("%d" ,& s r c) ;

p r i n t f (" \n node v i s i t order : ") ;
b f s (src , n) ; /∗ c a l l b f s () ∗/

return 0 ;

8 1. GRAPH TRAVERSAL ALGORITHMS

}

void b f s (i n t s , i n t n) { /∗ BFS ∗/
i n t p , i ;

i n s e r t (s) ;
v i s i t e d [s]=1;

p=d e l e t e () ;

i f (p!=−1)
p r i n t f (" %d" ,p) ;
whi l e (p!=−1) {

f o r (i =0; i<n ; i++)
i f ((a [p] [i] !=0)&&(v i s i t e d [i]==0)) {

i n s e r t (i) ;
v i s i t e d [i]=1;

}
p=d e l e t e () ;
i f (p!=−1)
p r i n t f (" %d " ,p) ;

}

f o r (i =0; i<n ; i++)
i f (v i s i t e d [i]==0)

b f s (i , n) ;
}

void i n s e r t (i n t num) { /∗ Q i n s e r t ∗/
i f (r ea r ==14)

p r i n t f (" Queue Fu l l ") ; /∗ Q f u l l ∗/
e l s e {

i f (r ea r==−1) {
q[++rea r]=num;
f r o n t++;

}
e l s e

q[++rea r]=num;
}

}

i n t d e l e t e () { /∗ Q d e l e t e ∗/
i n t num;
i f ((f ront >rea r) | | (f r o n t==−1)) /∗ Q empty ∗/
return −1;

e l s e {
num=q [f r o n t ++];

1.3. BREADTH FIRST SEARCH 9

re turn num;
}

}

Like DFS, to enter the input, we create the input text file as follws:

8
0 1 1 0 0 1 0 0
1 0 0 1 1 0 0 0
1 0 0 0 0 1 1 1
0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0
0

We reiterate the semantics of this text file. First line input is the number of
vertices in input graph. Next the matrix is the adjacency matrix of graph.
Last line number is the source vertex from where graph traversal is to begin.
The output is shown next.

$ gcc b f s1 . c
$. / a . out < graph_ip1 . txt

Enter Number o f V e r t i c e s in Graph :
Enter Adjacency Matrix o f the Graph :

n=8
Adjacency Matrix :

0 1 1 0 0 1 0 0
1 0 0 1 1 0 0 0
1 0 0 0 0 1 1 1
0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0

Enter The Source Vertex , in terms o f index :

node v i s i t order : 0 1 2 5 3 4 6 7 $

10 1. GRAPH TRAVERSAL ALGORITHMS

We run this program on the second graph in figure 1.2. Create the 8× 8
adjacency matrix of this directed graph and test the program by execution
on this graph.

	Graph Traversal Algorithms
	Graph Representation
	Depth First Search
	Breadth First Search

