
Artificial Intelligence
Informed Search

Paper Code: CS-401

Anupam Pattanayak1

Assistant Professor,
Department of Computer Science,

Raja N. L. Khan Women’s College (Autonomous),
Midnapore, West Bengal

April 14, 2020

1anupam.pk@gmail.com

ii

Contents

1 Informed Search 1
1.1 Background . 1
1.2 Informed Search . 2

1.2.1 Evaluation Function and Heuristic Functions 3
1.2.2 Admissible Heuristic and Constituent Heuristic 3

1.3 Properties of A∗ Search . 4
1.4 Iterative Deepening A∗ (IDA∗) Search 4
1.5 Depth First Branch & Bound Search 5

iii

iv CONTENTS

1

Informed Search

In classes we have seen uninformed search and A∗ search algorithm as an
informed search technique. In class, we have seen an example demonstrating
how A∗ works. In this study material, we will discuss remaining portion of
informed search.

This study material has been prepared by consulting multiple books and
video lectures. These references include the book by Russel1, book by Cop-
pin2, and NPTEL Course lectures on An Introduction to Artificial Intelligence
by Prof. Mausam3 in SWAYAM platform of MHRD, Govt. of India.

1.1 Background
Let us briefly revisit whatever have been covered so far. Many computational
problems can be mapped as AI search problems. In AI search problem, there
are huge number of states and actions. There is a start state and one or more
goal state(s). Our target is to find a path from start state to goal state. The
difference between traditional algorithmic search and AI search is that, the
complete search space is not given to us in AI. This is because the search
space can be really so huge that representing those states in memory will not
be feasible. So, in AI, the complete search state space is provided in terms
of expansion function.

The algorithms that we have discussed as uninformed search techniques -
Depth First Search (DFS), Breadth First Search (BFS), and Iterative Deep-
ening Search (IDS) are somewhat good but they are not satisfactory. These
algorithms search blindly at all directions. We require a guidance in search-

1Artificial Intelligence A Modern Approach by Russel and Norvig, PHI.
2Artificial Intelligence Illuminated by Ben Coppin, Jones and Bartlett Publishers
3https://swayam.gov.in/nd1_noc20_cs42/preview

1

2 1. INFORMED SEARCH

ing that helps us to reach good state more efficiently. This guided search is
called informed search or heuristic search.

1.2 Informed Search
Here, some kind of intuition is applied that guides search to reach the goal.
It makes a guess in every step. This guess may not help always to reach
the goal. There can be obstacles in the path to goal. In that case, we need
to replan the search. So, the idea of informed search (or heuristic search)
is to be smart regarding search paths to try. Here, we want to capture the
notion that, intuitively, this node is closer to a goal state than remaining
nodes considering the present state. We have to specify this formally. A
node is chosen for next expansion on the basis of an evaluation function
that estimates cost to reach a goal state. In the following, we describe the
algorithm 1 depicting general tree search paradigm of informed search

Algorithm 1 General Tree Search Paradigm of Innformed Search
function TreeSearch(RootNode)
Input: Search Tree
Output: solution on success, failure otherwise

1. frontier ← Successors(RootNode)

2. while(notempty(frontier))

3. node ← RemoveFirst(frontier) /* smallest f value */

4. state ← state(node)

5. if(GoalTest(state))
return solution(node)

6. frontier ← InsertAll(Successors(RootNode))

7. return failure
end TreeSearch

Similarly, the algorithm of general graph search paradigm of informed
search can be given. But we are skipping that. If you are interested, refer

1.2. INFORMED SEARCH 3

the book by Russel and Norvig4.

1.2.1 Evaluation Function and Heuristic Functions

We use three functions: f(n), g(n), and h(n).
Evaluation function, f(n) = g(n) + h(n) where n is the current node.
Purpose of these functions are as follows:

g(n) = cost incurred so far to reach n,
h(n) = estimated cost from n to goal,
f(n) = estimated total cost of path through n to goal.

f() is the evaluation function and h() = is the heuristic function.

1.2.2 Admissible Heuristic and Constituent Heuristic

A heuristic function h(n) is said to be admissible if h(n) ≤ h∗(n) ∀n where
h∗(n) is the true cost to reach goal state from n. An admissible heuristic
function never over-estimates the cost of reaching goal. That is, admissible
function is optimistic. There is a theorem that says the following.

If h(n) is admissible, then A∗ using Tree-Search is optimal.

A relevant question you may ask is, is heuristic function always need to
be less than thee optimal? The answer is no. It depends on whether we are
minimizing or maximizing. If we want minimum path cost then it has to be
≤. Otherwise, if we are interested in maximizing profit, then it has to be ≥.

Let us now see what is meant by consistent heuristic. A heuristic function
h(n) is said to be consistent if h(n) ≤ c(n, a, n′) + h(n′) ∀n and ∀ successor
n′ due to legal action a.

There is a theorem that says the following.

If h(n) is consistent, then A∗ using Graph-Search is optimal. The consis-

tent condition is more stricter than admissible. Every consistent heuristic is
also admissible, but not the vice versa.

4Artificial Intelligence A Modern Approach by Russel and Norvig, PHI

4 1. INFORMED SEARCH

1.3 Properties of A∗ Search
Properties of A∗ search algorithm is given in the tabular format in table 1.1.

Table 1.1: Properties of A∗ Search

Property Description
Complete Yes, unless there exists infinitely many

nodes with f ≤ f(G)
Optimal Yes, depending upon

goodness of heuristic property
Time Exponential. In worst case,

all nodes are visited
Space Keeps all generated nodes

in memory

A∗ is optimally efficient for any given consistent heuristic. In other words,
no other optimal search algorithm will expand fewer nodes than A∗. Com-
plexity of A∗ often makes it impractical for adoption in many large scale
applications.

1.4 Iterative Deepening A∗ (IDA∗) Search
It tries to overcome the disadvantage of A∗ algorithm. A∗ algorithm expands
all nodes with lower f value before it takes up higher f value. IDA∗ follows
the idea similar to ID search: exhaust all nodes upto a certain bound before
expanding to next level of bound. This bound can be cost, cost made so far,
depth etc. Overview of the IDA∗ algorithm is given in algorithm 2.

Algorithm 2 IDA∗ algorithm overview
while (solution not found)
do DFS but prune when cost(f) > current bound
increase bound

It says that just do DFS as long as our f increases upto a certian bound.
When it reaches the specified bound then stop and backtrack. Then increase
the bound and continue.

1.5. DEPTH FIRST BRANCH & BOUND SEARCH 5

IDA∗ is not systematic. But, IDA∗ never expands to a node where cost
> optimal cost. For real problems, often IDA∗ search algorithm is used
instead of A∗ search algorithm.

1.5 Depth First Branch & Bound Search
As the name sugggests, it also follows DFS. It uses two mechanisms:

I. BRANCH: This is the mechanism for branching when searching in the
solution space. It suggests which of the children is better at present
and go there.

II. BOUND: This is the mechanism to generate a bound so that many
branches can be terminated. A branch is terminated if it exceeds a
certain bound.

Now, let us look at an example. Consider the following weighted graph in
figure 1.1. The weights represent cost of edges.

S

B

C

D

E

F

H

G

1

2

3

5

3

7

1

4

4

1

1

Figure 1.1: A Graph

The search tree corresponding to above graph is shown in figure 1.2.
Let us now explore this search tree by DFS using branching strategy.

Starting node is S, and goal state is G. Initially, we do not know cost of the
solution. We can assume our cost of solution is ∞. So, initially we set upper
bound = ∞.

Then using DFS, we will traverse to node B from S, as S − B cost is
smaller than both S −C and S −D. That is, node S −B is visited prior to
node C and node D from S. Similarly, from node B there is only one edge
to E, and so is from E - node G. SO obtain a path to goal S −B −E −G.
Cost of this path is 1 + 5 + 4 = 10. As soon as we find a path to goal, we

6 1. INFORMED SEARCH

A

B C D

A

E E F F H

G G G G

1
2 1

5 4 3 1 7

4 4 1 1

G

1

Figure 1.2: Search Tree

update upper bound to be 10 from ∞. THis may be optimal, but we do not
know that yet. We now backtrack to E, but there is no other path from E.
So, we again backtrack to B. From B also, we do not have no other path.
So, we again backtrack to node S. From S, next node selected is D, and the
path to goal state reached is S −D − F −G, which has cost 2 + 1 + 1 = 4.
This is smaller than present upper bound. So, we update upper bound to 4.
Next we backtrack to node D and see the alternate path so far S −D −H
which already incurs more cost than upper bound, so we discard this path.
Similarly we will discard the path S−C−F whose cost is 6 > upper bound,
and so also the path S −C −E with cost 7 > upper bound. So, the optimal
path to goal state is S −D − F −G.

Depth first branch and bound is systematic, but it expands to sub-optimal
nodes also. If the given search graph has infinte depth then IDA∗ is better
than DFS branch and bound technique. Otherwise, if we have better estimate
of upper bound then DFS Branch & Bound works better. Also, if there are
many paths to goal state then DFS Branch & Bound does very well.

	Informed Search
	Background
	Informed Search
	Evaluation Function and Heuristic Functions
	Admissible Heuristic and Constituent Heuristic

	Properties of A* Search
	Iterative Deepening A* (IDA*) Search
	Depth First Branch & Bound Search

