
AMORTIZED ANALYSIS 

In an amortized analysis, the time required to perform a sequence of data-structure operations is 
averaged over all the operations performed. Amortized analysis can be used to show that the average 
cost of an operation is small, if one averages over a sequence of operations, even though a single 
operation might be expensive. Amortized analysis differs from average-case analysis in that probability is 
not involved; an amortized analysis guarantees the average performance of each operation in the worst 
case. 

The three most common techniques used in amortized analysis are : 

1.The Aggregate analysis method : In this method we determine an upper bound T(n) on the total cost 
of a sequence of n operations. The amortized cost per operation is then T(n)/n. 

 

2.The Acounting method : In this method we determine an amortized cost of each operation. When 
there is more than one type of operation, each type of operation may have a different amortized cost. 
The accounting method overcharges some operations early in the sequence, storing the overcharge as 
"prepaid credit" on specific objects in the data structure. The credit is used later in the sequence to 
pay for operations that are charged less than they actually cost. 

 

3. The Potential method : This method is like the accounting method in that we determine the amortized 
cost of each operation and may overcharge operations early on to compensate for undercharges later. 
The potential method maintains the credit as the "potential energy" of the data structure instead of 
associating the credit with individual objects within the data structure. 

 

Two examples are given below to illustrate these three method. One is a stack with the additional 
operation MULTIPOP, which pops several objects at once. The other is a binary counter that counts up 
from 0 by means of the single operation INCREMENT. 

The insight into a particular data structure gained by performing an amortized analysis can help in 
optimizing the design. 

1.The Aggregate method 

In the aggregate method of amortized analysis, we show that for all n, a sequence of n operations 
takes worst-case time T(n) in total. In the worst case, the average cost, or amortized cost, per 
operation is therefore T(n) / n. Note that this amortized cost applies to each operation, even when 
there are several types of operations in the sequence.  



Example 1 : Stack operations 

The first example of the aggregate method, we analyze stacks that have been augmented with a new 
operation. The two fundamental stack operations (i.e. push and pop), each of which takes O(1) 
time: 

PUSH(S, x) pushes object x onto stack S. 

POP(S) pops the top of stack S and returns the popped object. 

Since each of these operations runs in O(1) time, let us consider the cost of each to be 1. The 
total cost of a sequence of n PUSH and POP operations is therefore n, and the actual running time 
for n operations is therefore (n). 

The situation becomes more interesting if we add the stack operation MULTIPOP(S, k), which removes 
the k top objects of stack S, or pops the entire stack if it contains less than k objects. In the 
following pseudocode, the operation STACK-EMPTY returns TRUE if there are no objects currently on 
the stack, and FALSE otherwise. 

MULTIPOP(S,k) 
1  while not STACK-EMPTY(S) and k  0 
2      do POP(S) 
3         k  k - 1 

The actual running time of MULTIPOP(S, k) on a stack of s objects is linear in the number of POP 
operations actually executed, and thus it suffices to analyze MULTIPOP in terms of the abstract costs 
of 1 each for PUSH and POP. The number of iterations of the while loop is the number min(s, k) 
of objects popped off the stack. For each iteration of the loop, one call is made to POP in line 2. 
Thus, the total cost of MULTIPOP is min(s, k), and the actual running time is a linear function of 
this cost. 

 

The above figure shows the action of MULTIPOP on a stack S, shown initially in (a). The top 4 
objects are popped by MULTIPOP(S, 4), whose result is shown in (b). The next operation is 
MULTIPOP(S, 7), which empties the stack shown in (c) since there were fewer than 7 objects 
remaining. 

Let us analyze a sequence of n PUSH, POP, and MULTIPOP operations on an initially empty stack. 
The worst-case cost of a MULTIPOP operation in the sequence is O(n), since the stack size is at 



most n. The worst-case time of any stack operation is therefore O(n), and hence a sequence of n 
operations costs O(n2), since we may have O(n) MULTIPOP operations costing O(n) each. 
Although this analysis is correct, the O(n2) result, obtained by considering the worst-case cost of 
each operation individually, is not tight. 

Using the aggregate method of amortized analysis, we can obtain a better upper bound that considers 
the entire sequence of n operations. In fact, although a single MULTIPOP operation can be expensive, 
any sequence of n PUSH, POP, and MULTIPOP operations on an initially empty stack can cost at 
most O(n). Because each object can be popped at most once for each time it is pushed. Therefore, 
the number of times that POP can be called on a nonempty stack, including calls within MULTIPOP, is 
at most the number of PUSH operations, which is at most n. For any value of n, any sequence of n 
PUSH, POP, and MULTIPOP operations takes a total of O(n) time. The amortized cost of an 
operation is the average: O(n)/n = O(1). 

We emphasize again that although we have just shown that the average cost, and hence running time, 
of a stack operation is O(1), no probabilistic reasoning was involved. We actually showed a worst-
case bound of O(n) on a sequence of n operations. Dividing this total cost by n yielded the average 
cost per operation, or the amortized cost. 

Example 2 : Incrementing a binary counter 

As another example of the aggregate method, consider the problem of implementing a k-bit binary 
counter that counts upward from 0. We use an array A[0 . . k - 1] of bits, where length[A] = k, 
as the counter. A binary number x that is stored in the counter has its lowest-order bit in A[0] and 

its highest-order bit in A[k - 1], so that . Initially, x = 0, and thus A[i] = 0 for 
i = 0, 1, . . . , k - 1. To add 1 (modulo 2k) to the value in the counter, we use the following 
procedure. 

 



The above figure shows an 8-bit binary counter as its value goes from 0 to 16 by a sequence of 16 
INCREMENT operations. Bits that flip to achieve the next value are shaded. The running cost for 
flipping bits is shown at the right. Notice that the total cost is never more than twice the total number 
of INCREMENT operations. 
INCREMENT(A) 
1  i  0 
2  while i< length[A] and A[i] = 1 
3       do A[i]  0 
4          i  i + 1 
5  if i < length[A] 
6      then A[i]  1 

This algorithm is essentially the same one implemented in hardware by a ripple-carry counter. The 
above figure shows what happens to a binary counter as it is incremented 16 times, starting with the 
initial value 0 and ending with the value 16. At the start of each iteration of the while loop in lines 
2-4, we wish to add a 1 into position i. If A[i] = 1, then adding 1 flips the bit to 0 in position i 
and yields a carry of 1, to be added into position i + 1 on the next iteration of the loop. Otherwise, 
the loop ends, and then, if i < k, we know that A[i] = 0, so that adding a 1 into position i, flipping 
the 0 to a 1, is taken care of in line 6. The cost of each INCREMENT operation is linear in the 
number of bits flipped. 

As with the stack example, a cursory analysis yields a bound that is correct but not tight. A single 
execution of INCREMENT takes time (k) in the worst case, in which array A contains all 1's. 
Thus, a sequence of n INCREMENT operations on an initially zero counter takes time O(nk) in the 
worst case. 

We can tighten our analysis to yield a worst-case cost of O(n) for a sequence of n INCREMENT'S 
by observing that not all bits flip each time INCREMENT is called. As the last figure shows, A[0] 
does flip each time INCREMENT is called. The next-highest-order bit, A[1], flips only every other 
time: a sequence of n INCREMENT operations on an initially zero counter causes A[1] to flip n/2  
times. Similarly, bit A[2] flips only every fourth time, or n/4  times in a sequence of n 
INCREMENT'S. In general, for i = 0, 1, . . . , lg n , bit A[i] flips n/2i  times in a sequence of 
n INCREMENT operations on an initially zero counter. For i > lg n , bit A[i] never flips at all. The 
total number of flips in the sequence is thus 

 

by equation. The worst-case time for a sequence of n INCREMENT operations on an initially zero 
counter is therefore O(n), so the amortized cost of each operation is O(n)/n = O(1). 

 

 



2 .The accounting method 

In the accounting method of amortized analysis, we assign differing charges to different operations, with 
some operations charged more or less than they actually cost. The amount we charge an operation is 
called its amortized cost. When an operation's amortized cost exceeds its actual cost, the difference is 
assigned to specific objects in the data structure as credit. Credit can be used later on to help pay for 
operations whose amortized cost is less than their actual cost. Thus, one can view the amortized cost 
of an operation as being split between its actual cost and credit that is either deposited or used up. 
This is very different from the aggregate method, in which all operations have the same amortized cost. 

One must choose the amortized costs of operations carefully. If we want analysis with amortized costs 
to show that in the worst case the average cost per operation is small, the total amortized cost of a 
sequence of operations must be an upper bound on the total actual cost of the sequence. Moreover, 
as in the aggregate method, this relationship must hold for all sequences of operations. Thus, the total 
credit associated with the data structure must be nonnegative at all times, since it represents the 
amount by which the total amortized costs incurred exceed the total actual costs incurred. If the total 
credit were ever allowed to become negative (the result of undercharging early operations with the 
promise of repaying the account later on), then the total amortized costs incurred at that time would 
be below the total actual costs incurred; for the sequence of operations up to that time, the total 
amortized cost would not be an upper bound on the total actual cost. Thus, we must take care that 
the total credit in the data structure never becomes negative. 

Example 1. Stack operations 

To illustrate the accounting method of amortized analysis, let us return to the stack example. Recall 
that the actual costs of the operations were 

PUSH     1 , 
POP      1 , 
MULTIPOP  min(k,s) , 

where k is the argument supplied to MULTIPOP and s is the stack size when it is called. Let us 
assign the following amortized costs: 

PUSH     2 , 
POP      0 , 
MULTIPOP  0 . 

Note that the amortized cost of MULTIPOP is a constant (0), whereas the actual cost is variable. 
Here, all three amortized costs are O(l), although in general the amortized costs of the operations 
under consideration may differ asymptotically. 

We shall now show that we can pay for any sequence of stack operations by charging the amortized 
costs. Suppose we use a dollar bill to represent each unit of cost. We start with an empty stack. a. 
When we push a plate on the stack, we use 1 dollar to pay the actual cost of the push and are left 
with a credit of 1 dollar (out of the 2 dollars charged), which we put on top of the plate. At any 
point in time, every plate on the stack has a dollar of credit on it. 



The dollar stored on the plate is prepayment for the cost of popping it from the stack. When we 
execute a POP operation, we charge the operation nothing and pay its actual cost using the credit 
stored in the stack. To pop a plate, we take the dollar of credit off the plate and use it to pay the 
actual cost of the operation. Thus, by charging the PUSH operation a little bit more, we needn't 
charge the POP operation anything. 

Moreover, we needn't charge MULTIPOP operations anything either. To pop the first plate, we take the 
dollar of credit off the plate and use it to pay the actual cost of a POP operation. To pop a second 
plate, we again have a dollar of credit on the plate to pay for the POP operation, and so on. Thus, 
we have always charged at least enough up front to pay for MULTIPOP operations. In other words, 
since each plate on the stack has 1 dollar of credit on it, and the stack always has a nonnegative 
number of plates, we have ensured that the amount of credit is always nonnegative. Thus, for any 
sequence of n PUSH, POP, and MULTIPOP operations, the total amortized cost is an upper bound on 
the total actual cost. Since the total amortized cost is O(n), so is the total actual cost. 

Example 2.Incrementing a binary counter 

As another illustration of the accounting method, we analyze the INCREMENT operation on a binary 
counter that starts at zero. As we observed earlier, the running time of this operation is proportional to 
the number of bits flipped, which we shall use as our cost for this example. Let us once again use a 
dollar bill to represent each unit of cost (the flipping of a bit in this example). 

For the amortized analysis, let us charge an amortized cost of 2 dollars to set a bit to 1. When a bit 
is set, we use 1 dollar (out of the 2 dollars charged) to pay for the actual setting of the bit, and 
we place the other dollar on the bit as credit. At any point in time, every 1 in the counter has a 
dollar of credit on it, and thus we needn't charge anything to reset a bit to 0; we just pay for the 
reset with the dollar bill on the bit. 

The amortized cost of INCREMENT can now be determined. The cost of resetting the bits within the 
while loop is paid for by the dollars on the bits that are reset. At most one bit is set, in line 6 of 
INCREMENT, and therefore the amortized cost of an INCREMENT operation is at most 2 dollars. The 
number of l's in the counter is never negative, and thus the amount of credit is always nonnegative. 
Thus, for n INCREMENT operations, the total amortized cost is O(n), which bounds the total actual 
cost. 

3. The potential method 

Instead of representing prepaid work as credit stored with specific objects in the data structure, the 
potential method of amortized analysis represents the prepaid work as "potential energy,"or just 
"potential," that can be released to pay for future operations. The potential is associated with the data 
structure as a whole rather than with specific objects within the data structure. 

The potential method works as follows. We start with an initial data structure D0 on which n operations 
are performed. For each i = 1, 2, . . . , n, we let ci be the actual cost of the ith operation and Di 
be the data structure that results after applying the ith operation to data structure Di - l. A potential 
function maps each data structure Di to a real number (Di), which is the potential associated with 



data structure Di. The amortized cost of the ith operation with respect to potential function is 
defined by 

……………………………………………eq. (1) 

The amortized cost of each operation is therefore its actual cost plus the increase in potential due to 
the operation. By first equation(eq. 1), the total amortized cost of the n operations is 

 

…………………………………………………eq. (2) 

 

If we can define a potential function so that (Dn) (D0), then the total amortized cost 

is an upper bound on the total actual cost. In practice, we do not always know how many 
operations might be performed. Therefore, if we require that (Di) (D0) for all i, then we 
guarantee, as in the accounting method, that we pay in advance. It is often convenient to define 
(D0) to be 0 and then to show that (Di) 0 for all i.Intuitively, if the potential difference (Di) 

- (Di - 1) of the ith operation is positive, then the amortized cost represents an overcharge to 
the ith operation, and the potential of the data structure increases. If the potential difference is 
negative, then the amortized cost represents an undercharge to the ith operation, and the actual cost of 
the operation is paid by the decrease in the potential. 

The amortized costs defined by equations (eq.1) and (eq.2) depend on the choice of the potential 
function . Different potential functions may yield different amortized costs yet still be upper bounds on 
the actual costs. There are often trade-offs that can be made in choosing a potential function; the 
best potential function to use depends on the desired time bounds. 

Example 1.Stack operations 

To illustrate the potential method, we return once again to the example of the stack operations PUSH, 
POP, and MULTIPOP. We define the potential function on a stack to be the number of objects in 
the stack. For the empty stack D0 with which we start, we have (D0) = 0. Since the number of 
objects in the stack is never negative, the stack Di that results after the ith operation has nonnegative 
potential, and thus 

(Di)    0 
=  (D0). 



The total amortized cost of n operations with respect to therefore represents an upper bound on the 
actual cost. 

Let us now compute the amortized costs of the various stack operations. If the ith operation on a 
stack containing s objects is a PUSH operation, then the potential difference is 

(Di) - (Di - 1)  =  (s + 1 ) - s 
=  1 . 

By equation (eq.1), the amortized cost of this PUSH operation is 

 

Suppose that the ith operation on the stack is MULTIPOP(S,k) and that k' = min(k,s) objects are 
popped off the stack. The actual cost of the operation is k', and the potential difference is 

(Di) - (Di-1) = -k'. 

Thus, the amortized cost of the MULTIPOP operation is 

 

Similarly, the amortized cost of an ordinary POP operation is 0. 

The amortized cost of each of the three operations is O(1), and thus the total amortized cost of a 
sequence of n operations is O(n). Since we have already argued that (Di) (D0), the total 
amortized cost of n operations is an upper bound on the total actual cost. The worst-case cost of n 
operations is therefore O(n). 

Example 2.Incrementing a binary counter 

As another example of the potential method, we again look at incrementing a binary counter. This time, 
we define the potential of the counter after the ith INCREMENT operation to be bi, the number of 1's 
in the counter after the ith operation. 

Let us compute the amortized cost of an INCREMENT operation. Suppose that the ith INCREMENT 
operation resets ti bits. The actual cost of the operation is therefore at most ti +1, since in addition to 
resetting ti bits, it sets at most one bit to a 1. The number of 1's in the counter after the ith 
operation is therefore bi bi-1 - ti +1, and the potential difference is 

 (Di) - (Di-1)    (bi-1 - ti + 1) - bi-1 
=  1 - ti. 



The amortized cost is therefore 

 

If the counter starts at zero, then (D0) = 0. Since (Di) 0 for all i, the total amortized cost 
of a sequence of n INCREMENT operations is an upper bound on the total actual cost, and so the 
worst-case cost of n INCREMENT operations is O(n). 

The potential method gives us an easy way to analyze the counter even when it does not start at 
zero. There are initially b0 1's, and after n INCREMENT operations there are bn 1's, where 0 b0, bn 
k. We can rewrite equation (2) as 

………………………………………eq.3 

We have for all 1 i n. Since (D0) = b0 and (Dn) = bn, the total actual cost of n 
INCREMENT operations is 

 

Note in particular that since b0 k, if we execute at least n = (k) INCREMENT operations, the 
total actual cost is O(n), no matter what initial value the counter contains. 

 

Application : Dynamic tables 

In some applications, we do not know in advance how many objects will be stored in a table. We 
might allocate space for a table, only to find out later that it is not enough. The table must then be 
reallocated with a larger size, and all objects stored in the original table must be copied over into the 
new, larger table. Similarly, if many objects have been deleted from the table, it may be worthwhile to 
reallocate the table with a smaller size. This problem of dynamically expanding and contracting a table 
is discussed here. Using amortized analysis, we shall show that the amortized cost of insertion and 
deletion is only O(1), even though the actual cost of an operation is large when it triggers an 
expansion or a contraction. Moreover, we shall see how to guarantee that the unused space in a 
dynamic table never exceeds a constant fraction of the total space. 

We assume that the dynamic table supports the operations TABLE-INSERT and TABLE-DELETE. 
TABLE-INSERT inserts into the table an item that occupies a single slot, that is, a space for one 
item. Likewise, TABLE-DELETE can be thought of as removing an item from the table, thereby freeing 



a slot. The details of the data-structuring method used to organize the table are unimportant; we might 
use a stack, a heap, or a hash table. We might also use an array or collection of arrays to 
implement object storage. 

We shall find it convenient to use a concept introduced in our analysis of hashing .We define the load 
factor (T) of a nonempty table T to be the number of items stored in the table divided by the size 
(number of slots) of the table. We assign an empty table (one with no items) size 0, and we 
define its load factor to be 1. If the load factor of a dynamic table is bounded below by a constant, 
the unused space in the table is never more than a constant fraction of the total amount of space. 

We start by analyzing a dynamic table in which only insertions are performed. We then consider the 
more general case in which both insertions and deletions are allowed. 

. 

A Familiar Definition : 

Load factor α = num/size, where num = items stored and size = the allocated size of the table. 

For the boundary condition of size = num = 0, we will define α = 1. 

We never allow α > 1 (no chaining). 

Insertion Algorithm : 

We'll assume the following about our tables.  

When the table becomes full, we double its size and reinsert all existing items. This guarantees that α 
≥ 1/2, so we are not wasting a lot of space.  

  Table-Insert (T,x) 
    1  if T.size == 0 
    2      allocate T.table with 1 slot  
    3      T.size = 1 
    4  if T.num == T.size 
    5      allocate newTable with 2*T.size slots 
    6      insert all items in T.table into newTable 
    7      free T.table 
    8      T.table = newTable  
    9      T.size = 2*T.size  
    10  insert x into T.table  
    11  T.num = T.num + 1 

Each elementary insertion has unit actual cost. Initially T.num = T.size = 0. 



Aggregate Analysis of Dynamic Table Expansion 

Charge 1 per elementary insertion (including copying items into a new table). Count only these 
insertions, since all other costs are constant per call.  

ci = actual cost of ith operation (number of items inserted). 

• If the table is not full, ci = 1 (for lines 1, 4, 10, 11).  
• If full, there are i - 1 items in the table at the start of the ith operation. Must copy all of 

them (line 6), and then insert the ith item. Therefore ci = i - 1 + 1 = i.  

A sloppy analysis: In a sequence of n operations where any operation can be O(n), the sequence of 
n operations is O(n2).  

This is "correct", but inprecise: we rarely expand the table! A more precise account of ci is based on 
the fact that if we start with a table of size 1 and double its size every time we expand it, we do 
the expansions when the number of items in the table is a power of 2: 

 

Then we can sum the total cost of all ci for a sequence of n operations: 

 

Accounting Method Analysis of Dynamic Table Expansion 

We charge CY$3 for each insertion into the table, i.e., the amortized cost of the i-th insertion as ĉi 
= 3. The actual cost of the i-th insertion is as before: 

 

We must show that we never run out of credit 



Informal Explanation  

In case it helps to understand why this works: 

We charge CY$3 for inserting some item x into the table. Obviously, we are overcharging for each 
simple insertion which costs only CY$1. However, the overcharging will provide enough credit to pay for 
future copying of items when the table becomes full:  

• The first CY$1 pays for the actual cost of inserting x. 
• The second CY$1 will pay for the cost of copying x into a new table the next time table 

becomes full.  

But the table might need to be expanded more than once after x is inserted, so x might need to be 
copied more than once. Who will pay for future copying of x? That's where the third CY$1 comes in:  

• The third CY$1 will pay for the cost of copying some other item currently in the table that had 
been copied at least once before.  

Let's see why CY$3 is enough to cover all possible future exansions and copying associated with 
them.  

• Suppose the capacity of the table is m immediately after an expansion. Then it holds m/2 
items and no item in the table contains any credits.  

• For any insertion of an item x we charge CY$3. CY$1 pays for the actual insertion of x; we 
place CY$1 credit on x to pay for the cost of copying it in the future, and we place CY$1 
credit on some other item in the table that does not have any credit yet. 

• We will have to insert m/2 items before the next expansion of the table. Therefore, by the 
time the table will get expanded next time (and, consequently, items need to be copied), 
every item of the table will have CY$1 credit associated with it and this credit will pay for 
copying that item. 
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