

Unit-4

Basic Behavioral Modeling-I

Syllabus : Interactions, Interaction diagrams, Use cases, Use case Diagrams, Activity diagrams

Interactions

Terms and Concepts

An interaction is a behavior that comprises a set of messages exchanged among a set of objects within a

context to accomplish a purpose. A message is a specification of a communication between objects that

conveys information with the expectation that activity will ensue.

Context

You may find an interaction wherever objects are linked to one another. You'll find interactions in the
collaboration of objects that exist in the context of your system or subsystem. You will also find
interactions in the context of an operation. Finally, you'll find interactions in the context of a class.

Most often, you'll find interactions in the collaboration of objects that exist in the context of your system or
subsystem as a whole. For example, in a system for Web commerce, you'll find objects on the client (such
as instances of the classes BookOrder and OrderForm) interacting with one another. You'll also find
objects on the client (again, such as instances of BookOrder) interacting with objects on the server (such as
instances of BackOrderManager). These interactions therefore not only involve localized collaborations of
objects (such as the interactions surrounding OrderForm), but they may also cut across many conceptual
levels of your system (such as theinteractions surrounding BackOrderManager).

You'll also find interactions among objects in the implementation of an operation. The parameters of an

operation, any variables local to the operation, and any objects global to the operation (but still visible to the

operation) may interact with one another to carry out the algorithm of that operation's implementation. For

example, invoking the operation moveToPosition(p :Position) defined for a class in a mobile robot will

involve the interaction of a parameter (p), anobject global to the operation (such as the object

currentPosition), and possibly several local objects (such as local variables used by the operation to

calculate intermediate points in a path to the new position).

Finally, you will find interactions in the context of a class. You can use interactions to visualize, specify,
construct, and document the semantics of a class. For example, to understand the meaning of a class
RayTraceAgent, you might create interactions that show how the attributes of that class collaborate with

one another (and with objects global to instances of the class and with parameters defined in the class's

operations).

Objects and Roles

The objects that participate in an interaction are either concrete things or prototypical things. As a concrete
thing, an object represents something in the real world. For example, p, an instance of the class Person,
might denote a particular human. Alternately, as a prototypical thing, p might represent any instance of
Person.
In the context of an interaction, you may find instances of classes, components, nodes, and use cases.
Although abstract classes and interfaces, by definition, may not have any direct instances, you may find
instances of these things in an interaction. Such instances do not represent direct instances of the abstract
class or of the interface, but may represent, respectively, indirect (or prototypical) instances of any concrete
children of the abstract class of some concrete class that realizes that interface.

You can think of an object diagram as a representation of the static aspect of an interaction, setting the
stage for the interaction by specifying all the objects that work together. An interaction goes further by
introducing a dynamic sequence of messages that may pass along the links that connect these objects

Links

A link is a semantic connection among objects. In general, a link is an instance of an association. As
Figure shows, wherever a class has an association to another class, there may be a link between the
instances of the two classes; wherever there is a link between two objects, one object can send a message
to the other object.

Figure Links and Associations

A link specifies a path along which one object can dispatch a message to another (or the same) object.
Most of the time, it is sufficient to specify that such a path exists. If you need to be more precise about
how that path exists, you can adorn the appropriate end of the link with any of the following standard
stereotypes.

Specifies that the corresponding object is visible by association
association

self Specifies that the corresponding object is visible because it is the dispatcher

 of the operation
global Specifies that the corresponding object is visible because it is in an enclosing

 scope

local Specifies that the corresponding object is visible because it is in a local scope

parameter Specifies that the corresponding object is visible because it is a parameter

Messages

Call Invokes an operation on an object; an object may send a message to itself, resulting in

 the local invocation of an operation

Return Returns a value to the caller

Send Sends a signal to an object

Create Creates an object

 Destroys an object; an object may commit suicide by destroying itself

Destroy

Suppose you have a set of objects and a set of links that connect those objects. If that's all you have, then
you have a completely static model that can be represented by an object diagram. Object diagrams model

the state of a society of objects at a given moment in time and are useful when you want to visualize,

specify, construct, or document a static object structure.

Suppose you want to model the changing state of a society of objects over a period of time. Think of it as
taking a motion picture of a set of objects, each frame representing a successive moment in time. If these
objects are not totally idle, you'll see objects passing messages to other objects, sending events, and

invoking operations. In addition, at each frame, you can explicitly visualize the current state and role of
individual instances.

A message is the specification of a communication among objects that conveys information with the
expectation that activity will ensue. The receipt of a message instance may be considered an instance of
an event.

When you pass a message, the action that results is an executable statement that forms
an abstraction of a computational procedure. An action may result in a change in state.

In the UML, you can model several kinds of actions.

The UML provides a visual distinction among these kinds of messages, as Figure shows.

Figure Messages

The most common kind of message you'll model is the call, in which one object invokes an operation of
another (or the same) object. An object can't just call any random operation. If an object, such as c in the
example above, calls the operation setItinerary on an instance of the class TicketAgent, the operation
setItinerary must not only be defined for the class TicketAgent(that is, it must be declared in the

classTicketAgentor one of its parents), itmust also be visible to the caller c.

When an object calls an operation or sends a signal to another object, you can provide actual parameters
to the message. Similarly, when an object returns control to another object, you can model the return
value, as well.

Sequencing

When an object passes a message to another object (in effect, delegating some action to the receiver), the

receiving object might in turn send a message to another object, which might send a message to yet a

different object, and so on. This stream of messages forms a sequence. Any sequence must have a
beginning; the start of every sequence is rooted in some process or thread. Furthermore, any sequence

will continue as long as the process or thread that owns it lives. A nonstop system, such as you might find
in real time device control, will continue to execute as long as the node it runs on is up.

Each process and thread within a system defines a distinct flow of control, and within each flow, messages
are ordered in sequence by time. To better visualize the sequence of a message, you can explicitly model

the order of the message relative to the start of the sequence by prefixing the message with a sequence
number set apart by a colon separator.

Most commonly, you can specify a procedural or nested flow of control, rendered using a filled solid
arrowhead, as Figure shows. In this case, the message findAtis specified as the first message nested in
the second message of the sequence (2.1).

Figure Procedural Sequence

Less common but also possible, as Figure shows, you can specify a flat flow of control, rendered using a
stick arrowhead, to model the nonprocedural progression of control from step to step. In this case, the
message assertCall is specified as the second message in the sequence.

Figure Flat Sequenc

When you are modeling interactions that involve multiple flows of control, it's especially important to

identify the process or thread that sent a particular message. In the UML, you can distinguish one flow of
control from another by prefixing a message's sequence number with the name of the process or thread that

sits at the root of the sequence. For example, the expression

D5 :ejectHatch(3)

specifies that the operation ejectHatch is dispatched (with the actual argument 3) as the fifth message
in the sequence rooted by the process or thread named D.

Not only can you show the actual arguments sent along with an operation or a signal in the context of an
interaction, you can show the return values of a function as well. As the following expression shows, the

value p is returned from the operation find, dispatched with the actual parameter "Rachelle". This is a
nested sequence, dispatched as the second message nested in the third message nested in the first message
of the sequence. In the same diagram, p can then be used as an actual parameter in other messages.

Creation, Modification, and Destruction

Most of the time, the objects you show participating in an interaction exist for the entire duration of the

interaction. However, in some interactions, objects may be created (specified by a create message) and
destroyed (specified by a destroy message). The same is true of links: the relationships among objects
may come and go. To specify if an object or link enters and/or leaves during an interaction, you can attach
one of the following constraints to the element:

new Specifies that the instance or link is created during execution of the enclosing

 interaction

 Specifies that the instance or link is destroyed prior to completion of execution of

destroyed the en losing interaction

 Specifies that the instance or link is created during execution of the enclosing

transient interact ion but is destroyed before completion of execution

During an interaction, an object typically changes the values of its attributes, its state, or its roles. You
can represent the modification of an object by replicating the object in the interaction (with possibly
different attribute values, state, or roles). On a sequence diagram, you'd place each variant of the object
on the same lifeline. In an interaction diagram, you'd connect each variant with a become message.

Representation

When you model an interaction, you typically include both objects (each one playing a specific role)
and messages (each one representing the communication between objects, with some resulting
action).

You can visualize those objects and messages involved in an interaction in two ways: by emphasizing the
time ordering of its messages, and by emphasizing the structural organization of the objects that send and

receive messages. In the UML, the first kind of representation is called a sequence diagram; the second
kind of representation is called a collaboration diagram. Both sequence diagrams and collaboration
diagrams are kinds of interaction diagrams.

Sequence diagrams and collaboration diagrams are largely isomorphic, meaning that you can take one

and transform it into the other without loss of information. There are some visual differences,

however. First, sequence diagrams permit you to model the lifeline of an object. An object's lifeline

represents the existence of the object at a particular time, possibly covering the object's creation and

destruction. Second, collaboration diagrams permit you to model the structural links that may exist

among the objects in an interaction.

Common Modeling Techniques
Modeling a Flow of Contro
When you model an interaction, you essentially build a storyboard of the actions that take place

among a set of objects. Techniques such as CRC cards are particularly useful in helping you to
discover and think about such interactions.
To model a flow of control,

· Set the context for the interaction, whether it is the system as a whole, a class, or

an individual operation.

· Set the stage for the interaction by identifying which objects play a role; set their
initial properties, including their attribute values, state, and role.

· If your model emphasizes the structural organization of these objects, identify the links that

connect them, relevant to the paths of communication that take place in this interaction.
Specify the nature of the links using the UML's standard stereotypes and constraints, as
necessary.

· In time order, specify the messages that pass from object to object. As necessary,

distinguish the different kinds of messages; include parameters and return values to convey
the necessary detail of this interaction.

· Also to convey the necessary detail of this interaction, adorn each object at

every moment in time with its state and role.

For example, Figure shows a set of objects that interact in the context of a publish and subscribe
mechanism (an instance of the observer design pattern). This figure includes three objects: p (a
StockQuotePublisher), s1, and s2 (both instances of StockQuoteSubscriber). This figure is an example
of a sequence diagram, which emphasizesthe time order of messages.

Figure Flow of Control by Time

Figureis semantically equivalent to the previous one, but it is drawn as a collaborationdiagram, which
emphasizes the structural organization of the objects. This figure shows the same flow of control, but it
also provides a visualization of the links among these objects.

Figure Flow of Control by Organization

Interaction Diagrams

Terms and Concepts

An interaction diagram shows an interaction, consisting of a set of objects and their relationships,
including the messages that may be dispatched among them. A sequence diagram is an interaction
diagram that emphasizes the time ordering of messages. Graphically, a sequence diagram is a table that

shows objects arranged along the X axis and messages, ordered in increasing time, along the Y axis. A
collaboration diagram is an interaction diagram that emphasizes the structural organization of the objects
that send and receive messages. Graphically, a collaboration diagram is a collection of vertices and arcs.

Common Properties

An interaction diagram is just a special kind of diagram and shares the same common properties as do all other

diagrams• a name and graphical contents that are a projection into a model. What distinguishes an

interaction diagram from all other kinds of diagrams is its particular content.

Contents

Interaction diagrams commonly contain

· Objects

· Links

· Messages

Like all other diagrams, interaction diagrams may contain notes and constraints.

Sequence Diagrams

A sequence diagram emphasizes the time ordering of messages. As Figure shows, you form a sequence
diagram by first placing the objects that participate in the interaction at the top of your diagram, across the

X axis. Typically, you place the object that initiates the interaction at the left, and increasingly more
subordinate objects to the right. Next, you place the messages that these objects send and receive along the
Y axis, in order of increasing time from top to bottom. This gives the reader a clear visual cue to the flow
of control over time.

Figure Sequence Diagram

Sequence diagrams have two features that distinguish them from collaboration diagrams.

First, there is the object lifeline. An object lifeline is the vertical dashed line that represents the existence of
an object over a period of time. Most objects that appear in an interaction diagram will be in existence for

the duration of the interaction, so these objects are all aligned at the top of the diagram, with their lifelines
drawn from the top of the diagram to the bottom. Objects may be created during the interaction. Their
lifelines start with the receipt of the message stereotyped as create. Objects may be destroyed during the
interaction. Their lifelines end with the receipt ofthe message stereotyped as destroy (and are given the
visual cue of a large X, marking the end of their lives).

Second, there is the focus of control. The focus of control is a tall, thin rectangle that shows the period of
time during which an object is performing an action, either directly or through a subordinate procedure.
The top of the rectangle is aligned with the start of the action; the bottom is aligned with its completion

(and can be marked by a return message). You can show the nesting of a focus of control (caused by
recursion, a call to a self- operation, or by a callback from another object) by stacking another focus of
control slightly to the right of its parent (and can do so to an arbitrary depth). If you want to be especially
precise about where the focus of control lies, you can also shade the region of the rectangle during which

the object's method is actually computing (and control has not passed to another object).

Collaboration Diagrams

A collaboration diagram emphasizes the organization of the objects that participate in an interaction. As
Figure shows, you form a collaboration diagram by first placing the objects that participate in the
interaction as the vertices in a graph. Next, you render the links that connect these objects as the arcs of
this graph. Finally, you adorn these links with the messages that objects send and receive. This gives the
reader a clear visual cue to the flow of control in the context of the structural organization of objects that

collaborate.

Figure Collboration Diagram

Collaboration diagrams have two features that distinguish them from sequence diagrams.

First, there is the path. To indicate how one object is linked to another, you can attach a path stereotype to
the far end of a link (such as »local, indicating that the designated object is localto the sender). Typically,
you will only need to render the path of the link explicitly for local, parameter, global, and self (but not
association) paths.

Second, there is the sequence number. To indicate the time order of a message, you prefix the message

with a number (starting with the message numbered 1), increasing monotonically for each new message in

the flow of control (2, 3, and so on). To show nesting, you use Dewey decimal numbering (1 is the first

message; 1.1 is the first message nested in message 1; 1.2 is the second message nested in message 1 ; and

so on). You can show nesting to an arbitrary depth. Note also that, along the same link, you can show

many messages (possibly being sent from different directions), and each will have a unique sequence

number.

Most of the time, you'll model straight, sequential flows of control. However, you can also model more-

complex flows, involving iteration and branching. An iteration represents a repeated sequence of
messages. To model an iteration, you prefix the sequence number of a message with an iteration

expression such as *[i := 1..n] (or just * if you want to indicate iteration but don't want to specify its

details). An iteration indicates that the message (and any nested messages) will be repeated in accordance
with the given expression. Similarly, a condition represents a message whose execution is contingent on

the evaluation of a Boolean condition. To model a condition, you prefix the sequence number of a message

with a condition clause, such as [x > 0]. The alternate paths of a branch will have the same sequence
number, but each path must be uniquely distinguishable by a nonoverlapping condition.

For both iteration and branching, the UML does not prescribe the format of the expression inside the
brackets; you can use pseudocode or the syntax of a specific programming language.

Semantic Equivalence

Because they both derive from the same information in the UML's metamodel, sequence diagrams and

collaboration diagrams are semantically equivalent. As a result, you can take a diagram in one form and
convert it to the other without any loss of information, as you can see in the previous two figures, which

are semantically equivalent. However, this does not mean that both diagrams will explicitly visualize the

same information. For example, in the previous two figures, the collaboration diagram shows how the
objects are linked (note the »local and »global stereotypes), whereas the corresponding sequence diagram

does not. Similarly, thesequence diagram shows message return (note the return value committed), but
the corresponding collaboration diagram does not. In both cases, the two diagrams share the same

underlying model, but each may render some things the other does not.

Common Uses

You use interaction diagrams to model the dynamic aspects of a system. These dynamic aspects may

involve the interaction of any kind of instance in any view of a system's architecture, including instances

of classes (including active classes), interfaces, components, and nodes.

When you use an interaction diagram to model some dynamic aspect of a system, you do so in the
context of the system as a whole, a subsystem, an operation, or a class. You can also attach interaction
diagrams to use cases (to model a scenario) and to collaborations (to model the dynamic aspects of a
society of objects).

When you model the dynamic aspects of a system, you typically use interaction diagrams in two ways.

1. To model flows of control by time ordering

Here you'll use sequence diagrams. Modeling a flow of control by time ordering emphasizes the passing
of messages as they unfold over time, which is a particularly useful way to visualize dynamic behavior
in the context of a use case scenario. Sequence diagrams do a better job of visualizing simple iteration
and branching than do collaboration diagrams.

2. To model flows of control by organization

Here you'll use collaboration diagrams. Modeling a flow of control by organization emphasizes the

structural relationships among the instances in the interaction, along which messages may be

passed. Collaboration diagrams do a better job of visualizing complex iteration and branching and of
visualizing multiple concurrent flows of control than do sequence diagrams.

Common Modeling Techniques

Modeling Flows of Control by Time Ordering

Consider the objects that live in the context of a system, subsystem, operation or class. Consider also the
objects and roles that participate in a use case or collaboration. To model a flow of control that winds
through these objects and roles, you use an interaction diagram; to emphasize the passing of messages as
they unfold over time, you use a sequence diagram, a kind of interaction diagram.

To model a flow of control by time ordering,

· Set the context for the interaction, whether it is a system, subsystem, operation, or class, or one

scenario of a use case or collaboration.

· Set the stage for the interaction by identifying which objects play a role in the interaction. Lay
them out on the sequence diagram from left to right, placing the more important objects to the
left and their neighboring objects to the right.

· Set the lifeline for each object. In most cases, objects will persist through the entire interaction.

For those objects that are created and destroyed during the interaction, set their lifelines, as
appropriate, and explicitly indicate their birth and death with appropriately stereotyped
messages.

· Starting with the message that initiates this interaction, lay out each subsequent message from top

to bottom between the lifelines, showing each message's properties (such as its parameters), as
necessary to explain the semantics of the interaction.

· If you need to visualize the nesting of messages or the points in time when actual

computation is taking place, adorn each object's lifeline with its focus of control.

· If you need to specify time or space constraints, adorn each message with a timing mark and

attach suitable time or space constraints.

· If you need to specify this flow of control more formally, attach pre- and postconditions to each

message.

A single sequence diagram can show only one flow of control (although you can show simple variations
by using the UML's notation for iteration and branching). Typically, you'll have a number of interaction
diagrams, some of which are primary and others that show alternative paths or exceptional conditions.
You can use packages to organize these collections of sequence diagrams, giving each diagram a suitable

name to distinguish it from its siblings.

For example, Figure shows a sequence diagram that specifies the flow of control involvedin initiating a

simple, two-party phone call. At this level of abstraction, there are four objects involved: two Callers (s

and r), an unnamed telephone Switch, and c, the reification of the Conversation between the two parties.

The sequence begins with one Caller (s) dispatchinga signal (liftReceiver) to the Switch object. In turn,

the Switch calls setDialTone on the Caller, and the Caller iterates on the messagedialDigit. Note that this

message has atiming mark (dialing) that is used in a timing constraint (its executionTime must be less

than 30 seconds). This diagram does not indicate what happens if this time constraint is violated. For that

you could include a branch or a completely separate sequence diagram. The Switch object then calls itself

with the message routeCall. It then creates a Conversation object (c), to which it delegates the rest of the

work. Although not shown in this interaction, c would have the additional responsibility of being a party in

the switch's billing mechanism (which would be expressed in another interaction diagram). The

Conversation object (c) rings the Caller (r), who asynchronously sends the message liftReceiver. The

Conversation object then tells the Switch to connect the call, then tells both Caller objects to connect,

after which they may exchange information, as indicated by the attached note.

Figure Modeling Flows of Control by Time Ordering

An interaction diagram can begin or end at any point of a sequence. A complete trace of the flow of
control would be incredibly complex, so it's reasonable to break up parts of a larger flow into separate

diagrams.

Modeling Flows of Control by Organization

Consider the objects that live in the context of a system, subsystem, operation, or class. Consider also the
objects and roles that participate in a use case or collaboration. To model a flow of control that winds
through these objects and roles, you use an interaction diagram; to show the passing of messages in the
context of that structure, you use a collaboration diagram, a kind of interaction diagram.

To model a flow of control by organization,

· Set the context for the interaction, whether it is a system, subsystem, operation, or class, or one

scenario of a use case or collaboration.

· Set the stage for the interaction by identifying which objects play a role in the interaction. Lay
them out on the collaboration diagram as vertices in a graph, placing the more important objects
in the center of the diagram and their neighboring objects to the outside.

· Set the initial properties of each of these objects. If the attribute values, tagged values, state, or

role of any object changes in significant ways over the duration of the interaction, place a
duplicate object on the diagram, update it with these new values, and connect them by a message
stereotyped as become or copy (with a suitable sequence number).

· Specify the links among these objects, along which messages may pass.

1. Lay out the association links first; these are the most important ones, because they

represent structural connections.

2. Lay out other links next, and adorn them with suitable path stereotypes (such as global
and local) to explicitly specify how these objects are related to oneanother.

· Starting with the message that initiates this interaction, attach each subsequent message to the

appropriate link, setting its sequence number, as appropriate. Show nesting by using Dewey

decimal numbering.

· If you need to specify time or space constraints, adorn each message with a timing mark

and attach suitable time or space constraints.

· If you need to specify this flow of control more formally, attach pre- and postconditions to

each message.

As with sequence diagrams, a single collaboration diagram can show only one flow of control (although
you can show simple variations by using the UML's notation for interaction and branching). Typically,
you'll have a number of such interaction diagrams, some of which are primary and others that show
alternative paths or exceptional conditions. You can use packages to organize these collections of
collaboration diagrams, giving each diagram a suitable name to distinguish it from its siblings.

For example, Figure shows a collaboration diagram that specifies the flow of control involved in

registering a new student at a school, with an emphasis on the structural relationships among these objects.

You see five objects: a RegistrarAgent (r), a Student (s), two Course objects (c1 and c2), and an

unnamed School object. The flow of control is numbered explicitly. Action begins with the

RegistrarAgent creating a Student object, adding the student to the school (the message addStudent),

then telling the Student object to register itself. The Student object then invokesgetScheduleon itself,

presumably obtaining the Course objectsfor which it must register. The Student object then adds itself to

each Course object. The flow ends with s rendered again, showing that it has an updated value for its

registered attribute.

Figure Modeling Flows of Control by Organization

Note that this diagram shows a link between the School object and the two Course objects, plus another
link between the School object and the Student object, although no messages are shown along these
paths. These links help explain how the Student object can see the two Course objects to which it adds
itself.s, c1, and c2 are linked to the School via association, so s can find c1 and c2 during its call
togetSchedule(which might return a collection of Course objects), indirectly through the School object.

Forward and Reverse Engineering

Forward engineering (the creation of code from a model) is possible for both sequence

andcollaboration diagrams, especially if the context of the diagram is an operation. For example, using

the previous collaboration diagram, a reasonably clever forward engineering tool could generate the

following Java code for the operation register, attached to the Student class.

public void register() { CourseCollection c =

getSchedule(); for (inti = 0; i<c.size(); i++)

c.item(i).add(this);
this.registered = true;

}

"Reasonably clever" means the tool would have to realize that getSchedule returns a
CourseCollectionobject, which it could determine by looking at the operation's signature. Bywalking
across the contents of this object using a standard iteration idiom (which the tool could know about
implicitly), the code could then generalize to any number of course offerings.

Reverse engineering (the creation of a model from code) is also possible for both sequence
andcollaboration diagrams, especially if the context of the code is the body of an operation. Segments of
the previous diagram could have been produced by a tool from a prototypical execution of the register
operation.

When you are modeling interactions that involve multiple flows of control, it's especially important to
identify the process or thread that sent a particular message. In the UML, you can distinguish one flow of
control from another by prefixing a message's sequence number with the name of the process or thread that
sits at the root of the sequence. For example, the expression

D5 :ejectHatch(3)

specifies that the operation ejectHatch is dispatched (with the actual argument 3) as the fifth message
in the sequence rooted by the process or thread named D.

Not only can you show the actual arguments sent along with an operation or a signal in the context of an
interaction, you can show the return values of a function as well. As the following expression shows, the
value p is returned from the operation find, dispatched with the actual parameter "Rachelle". This is a
nested sequence, dispatched as the second message nested in the third message nested in the first message
of the sequence. In the same diagram, p can then be used as an actual parameter in other messages.

Creation, Modification, and Destruction

Most of the time, the objects you show participating in an interaction exist for the entire duration of the
interaction. However, in some interactions, objects may be created (specified by a create message) and
destroyed (specified by a destroy message). The same is true of links: the relationships among objects
may come and go. To specify if an object or link enters and/or leaves during an interaction, you can attach

one of the following constraints to the element:

new Specifies that the instance or link is created during execution of the enclosing

 interaction

 Specifies that the instance or link is destroyed prior to completion of execution of

destroyed the enclosing interaction

 Specifies that the instance or link is created during execution of the enclosing

transient interaction but is destroyed before completion of execution

During an interaction, an object typically changes the values of its attributes, its state, or its roles. You
can represent the modification of an object by replicating the object in the interaction (with possibly
different attribute values, state, or roles). On a sequence diagram, you'd place each variant of the object
on the same lifeline. In an interaction diagram, you'd connect each variant with a become message.

Representation

When you model an interaction, you typically include both objects (each one playing a specific role)
and messages (each one representing the communication between objects, with some resulting
action).

You can visualize those objects and messages involved in an interaction in two ways: by emphasizing the
time ordering of its messages, and by emphasizing the structural organization of the objects that send and

receive messages. In the UML, the first kind of representation is called a sequence diagram; the second
kind of representation is called a collaboration diagram. Both sequence diagrams and collaboration
diagrams are kinds of interaction diagrams.

Sequence diagrams and collaboration diagrams are largely isomorphic, meaning that you can take one

and transform it into the other without loss of information. There are some visual differences,
however. First, sequence diagrams permit you to model the lifeline of an object. An object's lifeline
represents the existence of the object at a particular time, possibly covering the object's creation and
destruction. Second, collaboration diagrams permit you to model the structural links that may exist
among the objects in an interaction.

Common Modeling Techniques

Modeling a Flow of Control

The most common purpose for which you'll use interactions is to model the flow of control that
characterizes the behavior of a system as a whole, including use cases, patterns, mechanisms, and
frameworks, or the behavior of a class or an individual operation. Whereas classes, interfaces,
components, nodes, and their relationships model the static aspects of your system, interactions model
its dynamic aspects.

When you model an interaction, you essentially build a storyboard of the actions that take place among
a set of objects. Techniques such as CRC cards are particularly useful in helping you to discover and

think about such interactions.
To model a flow of control,

· Set the context for the interaction, whether it is the system as a whole, a class, or an

individual operation.

· Set the stage for the interaction by identifying which objects play a role; set their initial
properties, including their attribute values, state, and role.

· If your model emphasizes the structural organization of these objects, identify the links that

connect them, relevant to the paths of communication that take place in this interaction.
Specify the nature of the links using the UML's standard stereotypes and constraints, as
necessary.

· In time order, specify the messages that pass from object to object. As necessary,

distinguish the different kinds of messages; include parameters and return values to convey
the necessary detail of this interaction.

· Also to convey the necessary detail of this interaction, adorn each object at every

moment in time with its state and role.

For example, Figure shows a set of objects that interact in the context of a publish and subscribe
mechanism (an instance of the observer design pattern). This figure includes three objects: p (a
StockQuotePublisher), s1, and s2 (both instances of StockQuoteSubscriber). This figure is an example
of a sequence diagram, which emphasizesthe time order of messages.

Figure Flow of Control by Time

Figureis semantically equivalent to the previous one, but it is drawn as a collaborationdiagram, which
emphasizes the structural organization of the objects. This figure shows the same flow of control, but it
also provides a visualization of the links among these objects.

Figure Flow of Control by Organization

Interaction Diagrams

Terms and Concepts

An interaction diagram shows an interaction, consisting of a set of objects and their relationships,
including the messages that may be dispatched among them. A sequence diagram is an interaction

diagram that emphasizes the time ordering of messages. Graphically, a sequence diagram is a table that
shows objects arranged along the X axis and messages, ordered in increasing time, along the Y axis. A

collaboration diagram is an interaction diagram that emphasizes the structural organization of the objects

that send and receive messages. Graphically, a collaboration diagram is a collection of vertices and arcs.

Common Properties

An interaction diagram is just a special kind of diagram and shares the same common properties as do all

other diagrams• a name and graphical contents that are a projection into a model. What distinguishes an

interaction diagram from all other kinds of diagrams is its particular content.

Contents

Interaction diagrams commonly contain

· Objects

· Links

· Messages

Like all other diagrams, interaction diagrams may contain notes and constraints.

Sequence Diagrams

A sequence diagram emphasizes the time ordering of messages. As Figure shows, you form a sequence
diagram by first placing the objects that participate in the interaction at the top of your diagram, across the
X axis. Typically, you place the object that initiates the interaction at the left, and increasingly more
subordinate objects to the right. Next, you place the messages that these objects send and receive along the
Y axis, in order of increasing time from top to bottom. This gives the reader a clear visual cue to the flow
of control over time.

Figure Sequence Diagram

sequence diagrams have two features that distinguish them from collaboration diagrams.

First, there is the object lifeline. An object lifeline is the vertical dashed line that represents the existence of
an object over a period of time. Most objects that appear in an interaction diagram will be in existence for
the duration of the interaction, so these objects are all aligned at the top of the diagram, with their lifelines
drawn from the top of the diagram to the bottom. Objects may be created during the interaction. Their
lifelines start with the receipt of the message stereotyped as create. Objects may be destroyed during the
interaction. Their lifelines end with the receipt ofthe message stereotyped as destroy (and are given the
visual cue of a large X, marking the end of their lives).

Second, there is the focus of control. The focus of control is a tall, thin rectangle that shows the period of
time during which an object is performing an action, either directly or through a subordinate procedure.

The top of the rectangle is aligned with the start of the action; the bottom is aligned with its completion
(and can be marked by a return message). You can show the nesting of a focus of control (caused by
recursion, a call to a self- operation, or by a callback from another object) by stacking another focus of
control slightly to the right of its parent (and can do so to an arbitrary depth). If you want to be especially

precise about where the focus of control lies, you can also shade the region of the rectangle during which
the object's method is actually computing (and control has not passed to another object).

Collaboration Diagrams

A collaboration diagram emphasizes the organization of the objects that participate in an interaction. As

Figure shows, you form a collaboration diagram by first placing the objects that participate in the
interaction as the vertices in a graph. Next, you render the links that connect these objects as the arcs of
this graph. Finally, you adorn these links with the messages that objects send and receive. This gives the
reader a clear visual cue to the flow of control in the context of the structural organization of objects that

collaborate.

Figure Collaboration Diagram

collaboration diagrams have two features that distinguish them from sequence diagrams.

First, there is the path. To indicate how one object is linked to another, you can attach a path stereotype to
the far end of a link (such as »local, indicating that the designated object is localto the sender). Typically,
you will only need to render the path of the link explicitly for local, parameter, global, and self (but not
association) paths.

Second, there is the sequence number. To indicate the time order of a message, you prefix the message
with a number (starting with the message numbered 1), increasing monotonically for each new message in

the flow of control (2, 3, and so on). To show nesting, you use Dewey decimal numbering (1 is the first
message; 1.1 is the first message nested in message 1; 1.2 is the second message nested in message 1 ; and
so on). You can show nesting to an arbitrary depth. Note also that, along the same link, you can show
many messages (possibly being sent from different directions), and each will have a unique sequence
number.

Most of the time, you'll model straight, sequential flows of control. However, you can also model more-

complex flows, involving iteration and branching. An iteration represents a repeated sequence of
messages. To model an iteration, you prefix the sequence number of a message with an iteration

expression such as *[i := 1..n] (or just * if you want to indicate iteration but don't want to specify its

details). An iteration indicates that the message (and any nested messages) will be repeated in accordance
with the given expression. Similarly, a condition represents a message whose execution is contingent on

the evaluation of a Boolean condition. To model a condition, you prefix the sequence number of a message

with a condition clause, such as [x > 0]. The alternate paths of a branch will have the same sequence
number, but each path must be uniquely distinguishable by a nonoverlapping condition.

For both iteration and branching, the UML does not prescribe the format of the expression inside the
brackets; you can use pseudocode or the syntax of a specific programming language.

Semantic Equivalence

Because they both derive from the same information in the UML's metamodel, sequence diagrams and

collaboration diagrams are semantically equivalent. As a result, you can take a diagram in one form and
convert it to the other without any loss of information, as you can see in the previous two figures, which

are semantically equivalent. However, this does not mean that both diagrams will explicitly visualize the

same information. For example, in the previous two figures, the collaboration diagram shows how the
objects are linked (note the »local and »global stereotypes), whereas the corresponding sequence diagram

does not. Similarly, thesequence diagram shows message return (note the return value committed), but

the corresponding collaboration diagram does not. In both cases, the two diagrams share the same
underlying model, but each may render some things the other does not.

Common Uses

You use interaction diagrams to model the dynamic aspects of a system. These dynamic aspects may

involve the interaction of any kind of instance in any view of a system's architecture, including instances

of classes (including active classes), interfaces, components, and nodes.

When you use an interaction diagram to model some dynamic aspect of a system, you do so in the context

of the system as a whole, a subsystem, an operation, or a class. You can also attach interaction diagrams
to use cases (to model a scenario) and to collaborations (to model the dynamic aspects of a society of

objects).

When you model the dynamic aspects of a system, you typically use interaction diagrams in two ways.

1. To model flows of control by time ordering

Here you'll use sequence diagrams. Modeling a flow of control by time ordering emphasizes the passing

of messages as they unfold over time, which is a particularly useful way to visualize dynamic behavior

in the context of a use case scenario. Sequence diagrams do a better job of visualizing simple iteration
and branching than do collaboration diagrams.

2. To model flows of control by organization

Here you'll use collaboration diagrams. Modeling a flow of control by organization emphasizes the

structural relationships among the instaes in the interaction, along which messages may be

assed. Collaboration diagrams do a better job of visualizing complex iteration and branching and of
visualizing multiple concurrent flows of control than do sequence diagrams.

Common Modeling Techniques

Modeling Flows of Control by Time Ordering

Consider the objects that live in the context of a system, subsystem, operation or class. Consider also the
objects and roles that participate in a use case or collaboration. To model a flow of control that winds
through these objects and roles, you use an interaction diagram; to emphasize the passing of messages as
they unfold over time, you use a sequence diagram, a kind of interaction diagram.

To model a flow of control by time ordering,

· Set the context for the interaction, whether it is a system, subsystem, operation, or class, or one

scenario of a use case or collaboration.

· Set the stage for the interaction by identifying which objects play a role in the interaction. Lay

them out on the sequence diagram from left to right, placing the more important objects to the
left and their neighboring objects to the right.

· Set the lifeline for each object. In most cases, objects will persist through the entire

interaction. For those objects that are created and destroyed during the interaction, set their
lifelines, as appropriate, and explicitly indicate their birth and death with appropriately
stereotyped messages.

· Starting with the message that initiates this interaction, lay out each subsequent message from top

to bottom between the lifelines, showing each message's properties (such as its parameters), as
necessary to explain the semantics of the interaction.

· If you need to visualize the nesting of messages or the points in time when actual

computation is taking place, adorn each object's lifeline with its focus of control.

· If you need to specify time or space constraints, adorn each message with a timing mark and

attach suitable time or space constraints.

· If you need to specify this flow of control more formally, attach pre- and postconditions to each
message.

A single sequence diagram can show only one flow of control (although you can show simple variations
by using the UML's notation for iteration and branching). Typically, you'll have a number of interaction

diagrams, some of which are primary and others that show alternative paths or exceptional conditions.
You can use packages to organize these collections of sequence diagrams, giving each diagram a suitable
name to distinguish it from its siblings.

For example, Figure shows a sequence diagram that specifies the fslow of control involvedin initiating a

simple, two-party phone call. At this level of abstraction, there are four objects involved: two Callers (s

and r), an unnamed telephone Switch, and c, the reification of the Conversation between the two parties.

The sequence begins with one Caller (s) dispatchinga signal (liftReceiver) to the Switch object. In turn,

the Switch calls setDialTone on the Caller, and the Caller iterates on the messagedialDigit. Note that

this message has atiming mark (dialing) that is used in a timing constraint (its executionTime must be

less than 30 seconds). This diagram does not indicate what happens if this time constraint is violated. For

that you could include a branch or a completely separate sequence diagram. The Switch object then calls

itself with the message routeCall. It then creates a Conversation object (c), to which it delegates the rest

of the work. Although not shown in this interaction, c would have the additional responsibility of being a

party in the switch's billing mechanism (which would be expressed in another interaction diagram). The

Conversation object (c) rings the Caller (r), who asynchronously sends the message liftReceiver. The

Conversation object then tells the Switch to connect the call, then tells both Caller objects to connect,

after which they may exchange information, as indicated by the attached note.

Figure Modeling Flows of Control by Time Ordering

An interaction diagram can begin or end at any point of a sequence. A complete trace of the flow of
control would be incredibly complex, so it's reasonable to break up parts of a larger flow into separate

diagrams.

Modeling Flows of Control by Organization

Consider the objects that live in the context of a system, subsystem, operation, or class. Consider also the
objects and roles that participate in a use case or collaboration. To model a flow of control that winds
through these objects and roles, you use an interaction diagram; to show the passing of messages in the
context of that structure, you use a collaboration diagram, a kind of interaction diagram.

To model a flow of control by organization,

· Set the context for the interaction, whether it is a system, subsystem, operation, or class, or one

scenario of a use case or collaboration.

· Set the stage for the interaction by identifying which objects play a role in the interaction. Lay
them out on the collaboration diagram as vertices in a graph, placing the more important objects
in the center of the diagram and their neighboring objects to the outside.

· Set the initial properties of each of these objects. If the attribute values, tagged values, state, or

role of any object changes in significant ways over the duration of the interaction, place a
duplicate object on the diagram, update it with these new values, and connect them by a message

stereotyped as become or copy (with a suitable sequence number).

· Specify the links among these objects, along which messages may pass.

1. Lay out the association links first; these are the most important ones, because

they represent structural connections.

2. Lay out other links next, and adorn them with suitable path stereotypes (such as global
and local) to explicitly specify how these objects are related to oneanother.

· Starting with the message that initiates this interaction, attach each subsequent message to the

appropriate link, setting its sequence number, as appropriate. Show nesting by using Dewey
decimal numbering.

· If you need to specify time or space constraints, adorn each message with a timing mark and

attach suitable time or space constraints.

· If you need to specify this flow of control more formally, attach pre- and postconditions to each message.

As with sequence diagrams, a single collaboration diagram can show only one flow of control (although
you can show simple variations by using the UML's notation for interaction and branching). Typically,
you'll have a number of such interaction diagrams, some of which are primary and others that show
alternative paths or exceptional conditions. You can use packages to organize these collections of
collaboration diagrams, giving each diagram a suitable name to distinguish it from its siblings.

For example, Figure shows a collaboration diagram that specifies the flow of control involved in

registering a new student at a school, with an emphasis on the structural relationships among these objects.

You see five objects: a RegistrarAgent (r), a Student (s), two Course objects (c1 and c2), and an

unnamed School object. The flow of control is numbered explicitly. Action begins with the

RegistrarAgent creating a Student object, adding the student to the school (the message addStudent),

then telling the Student object to register itself. The Student object then invokesgetScheduleon itself,

presumably obtaining the Course objectsfor which it must register. The Student object then adds itself to

each Course object. The flow ends with s rendered again, showing that it has an updated value for its

registered attribute.

Figure Modeling Flows of Control by Organization

Note that this diagram shows a link between the School object and the two Course objects, plus another
link between the School object and the Student object, although no messages are shown along these
paths. These links help explain how the Student object can see the two Course objects to which it adds
itself.s, c1, and c2 are linked to the School via association, so s can find c1 and c2 during its call
togetSchedule(which might return a collection of Course objects), indirectly through the School object.

Forward and Reverse Engineering

Forward engineering (the creation of code from a model) is possible for both sequence

andcollaboration diagrams, especially if the context of the diagram is an operation. For example, using

the previous collaboration diagram, a reasonably clever forward engineering tool could generate the

following Java code for the operation register, attached to the Student class.

public void register() { CourseCollection c =

getSchedule(); for (inti = 0; i<c.size(); i++)

c.item(i).add(this);
this.registered = true;

}

"Reasonably clever" means the tool would have to realize that getSchedule returns a
CourseCollectionobject, which it could determine by looking at the operation's signature. Bywalking
across the contents of this object using a standard iteration idiom (which the tool could know about
implicitly), the code could then generalize to any number of course offerings.

Reverse engineering (the creation of a model from code) is also possible for both sequence
andcollaboration diagrams, especially if the context of the code is the body of an operation. Segments of
the previous diagram could have been produced by a tool from a prototypical execution of the register
operation.

Use Cases

Terms and Concepts

A use case is a description of a set of sequences of actions, including variants, that a system performs to
yield an observable result of value to an actor. Graphically, a use case is rendered as an ellipse.

Names

Every use case must have a name that distinguishes it from other use cases. A name is a textual string.

That name alone is known as a simple name; a path name is the use case name prefixed by the name of

the package in which that use case lives. A use case is typically drawn showing only its name, as in
Figure.

Figure Simple and Path Names

Note

A use case name may be text consisting of any number of letters, numbers, and most
punctuation marks (except for marks such as the colon, which is used to separate a class name

and the name of its enclosing package) and may continue over several lines. In practice, use
case names are short active verb phrases naming some behavior found in the vocabulary of
the system you are modeling.

Use Cases and Actors

An actor represents a coherent set of roles that users of use cases play when interacting with these use
cases. Typically, an actor represents a role that a human, a hardware device, or even another system plays
with a system. For example, if you work for a bank, you might be a LoanOfficer. If you do your personal
banking there, as well, you'll also play the role of Customer. An instance of an actor, therefore, represents
an individual interacting with thesystem in a specific way. Although you'll use actors in your models,
actors are not actually part of the system. They live outside the system.

As Figure indicates, actors are rendered as stick figures. You can define general kinds of actors (such as
Customer) and specialize them (such as CommercialCustomer) using generalization relationships.

Figure Actors

Actors may be connected to use cases only by association. An association between an actor and a use case

indicates that the actor and the use case communicate with one another, each one possibly sending and
receiving messages.

Use Cases and Flow of Events

A use case describes what a system (or a subsystem, class, or interface) does but it does not specify
how it does it. When you model, it's important that you keep clear the separation of concerns between
this outside and inside view.

You can specify the behavior of a use case by describing a flow of events in text clearly enough for an
outsider to understand it easily. When you write this flow of events, you should include how and when the

use case starts and ends, when the use case interacts with the actors and what objects are exchanged, and

the basic flow and alternative flows of the behavior.

For example, in the context of an ATM system, you might describe the use case ValidateUser in the
following way:

Main flow of events:

The use case starts when the system prompts the Customer for a PIN number. The
Customer can now enter a PIN number via the keypad. The Customer commits the entry
by pressing the Enter button. The system then checks this PIN number to see if it is

valid. If the PIN number is valid, the system acknowledges the entry, thus ending the use
case.

Exceptional flow of events:

The Customer can cancel a transaction at any time by pressing the Cancel button,
thus restarting the use case. No changes are made to the Customer's account.

Exceptional flow of events:

The Customer can clear a PIN number anytime before committing it and reenter a
new PIN number.

Exceptional flow of events:

If the Customer enters an invalid PIN number, the use case restarts. If this

happens three times in a row, the system cancels the entire transaction,

preventing the Customer from interacting with the ATM for 60 seconds.

Use Cases and Scenarios

Typically, you'll first describe the flow of events for a use case in text. As you refine your understanding

of your system's requirements, however, you'll want to also use interaction diagrams to specify these

flows graphically. Typically, you'll use one sequence diagram to specify a use case's main flow, and

variations of that diagram to specify a use case's exceptional flows.

It is desirable to separate main versus alternative flows because a use case describes a set of sequences, not
just a single sequence, and it would be impossible to express all the details of an interesting use case in
just one sequence. For example, in a human resources system, you might find the use case Hire employee.

This general business function might have many possible variations. You might hire a person from another
company (the most common scenario); you might transfer a person from one division to another (common
in international companies); or you might hire a foreign national (which involves its own special rules).
Each of these variants can be expressed in a different sequence.

This one use case (Hire employee) actually describes a set of sequences in which each sequence in the

set represents one possible flow through all these variations. Each sequence is called a scenario. A

scenario is a specific sequence of actions that illustrates behavior. Scenarios are to use cases as instances

are to classes, meaning that a scenario is basically one instance of a use case.

Use Cases and Collaborations

A use case captures the intended behavior of the system (or subsystem, class, or interface) you are
developing, without having to specify how that behavior is implemented. That's an important separation
because the analysis of a system (which specifies behavior) should, as much as possible, not be
influenced by implementation issues (which specify how that behavior is to be carried out). Ultimately,
however, you have to implement your use cases, and you do so by creating a society of classes and other
elements that work together to implement the behavior of this use case. This society of elements,
including both its static and dynamic structure, is modeled in the UML as a collaboration.

As Figure shows, you can explicitly specify the realization of a use case by a collaboration. Most of the
time, though, a given use case is realized by exactly one collaboration, so you will not need to model this
relationship explicitly.

Figure Use Cases and Collaborations

Organizing Use Cases

You can organize use cases by grouping them in packages in the same manner in which you can
organize classes.

You can also organize use cases by specifying generalization, include, and extend relationships among

them. You apply these relationships in order to factor common behavior (by pulling such behavior from
other use cases that it includes) and in order to factor variants (by pushing such behavior into other use

cases that extend it).

Generalization among use cases is just like generalization among classes. Here it means that the child use
case inherits the behavior and meaning of the parent use case; the child may add to or override the
behavior of its parent; and the child may be substituted any place the parent appears (both the parent and
the child may have concrete instances). For example, in a banking system, you might have the use case
Validate User, which is responsible for verifying the identify of the user. You might then have two

specialized children of this use case (Check password and Retinal scan), both of which behave just like
Validate User and may be applied anywhere Validate User appears, yet both of which add their own

behavior (the former by checking atextual password, the latter by checking the unique retina patterns of
the user). As shown in Figure , generalization among use cases is rendered as a solid directed line with a
largeopen arrowhead, just like generalization among classes.

Figure Generalization, Include, and Extend

In include relationship between use cases means that the base use case explicitly incorporates the behavior

of another use case at a location specified in the base. The included use case never stands alone, but is
only instantiated as part of some larger base that includes it. You can think of include as the base use case

pulling behavior from the supplier use case.

You use an include relationship to avoid describing the same flow of events several times, by putting the

common behavior in a use case of its own (the use case that is included by a base use case). The include

relationship is essentially an example of delegation• you take a set of responsibilities of the system and
capture it in one place (the included use case), then let all other parts of the system (other use cases)
include the new aggregation of responsibilities whenever they need to use that functionality.

You render an include relationship as a dependency, stereotyped as include. To specify the location in
a flow of events in which the base use case includes the behavior of another, you simply write include
followed by the name of the use case you want to include, as in the following flow for Track order.

Main flow of events:

Obtain and verify the order number. include (Validate user). For each part in the order,
query its status, then report back to the user.

An extend relationship between use cases means that the base use case implicitly incorporates the

behavior of another use case at a location specified indirectly by the extending use case. The base use case

may stand alone, but under certain conditions, its behavior may be extended by the behavior of another

use case. This base use case may be extended only at certain points called, not surprisingly, its extension

points. You can think of extend as the extension use case pushing behavior to the base use case You use

an extend relationship to model the part of a use case the user may see as optional system behavior. In this

way, you separate optional behavior from mandatory behavior. You may also use an extend relationship

to model a separate subflow that is executed only under given conditions. Finally, you may use an extend

relationship to model several flows that may be inserted at a certain point, governed by explicit interaction

with an actor.

You render an extend relationship as a dependency, stereotyped as extend. You may list the extension
points of the base use case in an extra compartment. These extension points are just labels that may
appear in the flow of the base use case. For example, the flow for Place order might read as follows:

Main flow of events:

include(Validate user). Collect the user's order items. (set priority).
Submit the order for processing.

In this example, set priority is an extension point. A use case may have more than one extension point
(which may appear more than once), and these are always matched by name. Under normal
circumstances, this base use case will execute without regard for the priority of the order. If, on the other
hand, this is an instance of a priority order, the flow for this base case will carry out as above. But at the
extension point (set priority), the behavior of the extending use case (Place rush order) will be
performed, then the flow will resume. If there are multiple extension points, the extending use case will
simply fold in its flows in order.

Other Features

Use cases are classifiers, so they may have attributes and operations that you may render just as for

classes. You can think of these attributes as the objects inside the use case that you need to describe its

outside behavior. Similarly, you can think of these operations as the actions of the system you need to

describe a flow of events. These objects and operations may be used in your interaction diagrams to

specify the behavior of the use case.As classifiers, you can also attach state machines to use cases. You

can use state machines as yet another way to describe the behavior represented by a use case.

Common Modeling Techniques

Modeling the Behavior of an Element

The most common thing for which you'll apply use cases is to model the behavior of an element,

whether it is the system as a whole, a subsystem, or a class. When you model the behavior of these

things, it's important that you focus on what that element does, not how it does it.

Applying use cases to elements in this way is important for three reasons. First, by modeling the behavior

of an element with use cases, you provide a way for domain experts to specify its outside view to a degree
sufficient for developers to construct its inside view. Use cases provide a forum for your domain experts,

end users, and developers to communicate to one another. Second, use cases provide a way for developers

to approach an element and understand it. A system, subsystem, or class may be complex and full of
operations and other parts. By specifying an element's use cases, you help users of these elements to

approach them in a direct way, according to how they are likely to use them. In the absence of such use

cases, users have to discover on their own how to use those elements. Use cases let the author of an
element communicate his or her intent about how that element should be used. Third, use cases serve as

the basis for testing each element as it evolves during development. By continuously testing each element
against its use cases, you continuously validate its implementation. Not only do these use cases provide a

source of regression tests, but every time you throw a new use case at an element, you are forced to

reconsider your implementation to ensure that this element is resilient to change. If it is not, you must fix
your architecture appropriately.

To model the behavior of an element,

· Identify the actors that interact with the element. Candidate actors include groups that require

certain behavior to perform their tasks or that are needed directly or indirectly to perform the
element's functions.

· Organize actors by identifying general and more specialized roles.

· For each actor, consider the primary ways in which that actor interacts with the element.

Consider also interactions that change the state of the element or its environment or that involve
a response to some event.

· Consider also the exceptional ways in which each actor interacts with the element.

· Organize these behaviors as use cases, applying include and extend relationships to

factor common behavior and distinguish exceptional behavior.

For example, a retail system will interact with customers who place and track orders. In turn, the system
will ship orders and bill the customer. As Figure shows, you can model the behavior of such a system by
declaring these behaviors as use cases (Place order, Trackorder, Ship order, and Bill customer).
Common behavior can be factored out (Validate customer) and variants (Ship partial order) can be
distinguished, as well. For each ofthese use cases, you would include a specification of the behavior, either
by text, state machine, or interactions.

Figure Modeling the Behavior of an Element

Use Case Diagrams

Terms and Concepts

A use case diagram is a diagram that shows a set of use cases and actors and their relationships.

Common Properties

A use case diagram is just a special kind of diagram and shares the same common properties as do all other

diagrams• a name and graphical contents that are a projection into a model. What distinguishes a use

case diagram from all other kinds of diagrams is its particular content.

Contents

Use case diagrams commonly contain

· Use cases

· Actors

· Dependency, generalization, and association relationships

Like all other diagrams, use case diagrams may contain notes and constraints.
Use case diagrams may also contain packages, which are used to group elements of your model into larger
chunks. Occasionally, you'll want to place instances of use cases in your diagrams, as well, especially
when you want to visualize a specific executing system.

Common Uses
You apply use case diagrams to model the static use case view of a system. This view primarily supports
the behavior of a system• the outwardly visible services that the system provides in the context of its
environment.

When you model the static use case view of a system, you'll typically apply use case diagrams in one of
two ways.

1. To model the context of a system

Modeling the context of a system involves drawing a line around the whole system and asserting which

actors lie outside the system and interact with it.Here, you'll apply use case diagrams to specify the actors
and the meaning of their roles.

2. To model the requirements of a system

Modeling the requirements of a system involves specifying what that system should do (from a point of
view of outside the system), independent of how that system should do it. Here, you'll apply use case
diagrams to specify the desired behavior of the system. In this manner, a use case diagram lets you view
the whole system as a black box; you can see what's outside the system and you can see how that system
reacts to the things outside, but you can't see how that system works on the inside.

Common Modeling Techniques

Modeling the Context of a System

Given a system• any system• some things will live inside the system, some things will live outside it. For

example, in a credit card validation system, you'll find such things as accounts, transactions, and fraud

detection agents inside the system. Similarly, you'll find such things as credit card customers and retail

institutions outside the system. The things that live inside the system are responsible for carrying out the

behavior that those on the outside expect the system to provide. All those things on the outside that

interact with the system constitute the system's context. This context defines the environment in which
that system lives.

In the UML, you can model the context of a system with a use case diagram, emphasizing the actors that

surround the system. Deciding what to include as an actor is important because in doing so you specify a
class of things that interact with the system. Deciding what not to include as an actor is equally, if not
more, important because that constrains the system's environment to include only those actors that are
necessary in the life of the system.

To model the context of a system,

· Identify the actors that surround the system by considering which groups require help from the

system to perform their tasks; which groups are needed to execute the system's functions;

which groups interact with external hardware or other software systems; and which groups

perform secondary functions for administration and maintenance.

· Organize actors that are similar to one another in a

generalization/specialization hierarchy.

· Where it aids understandability, provide a stereotype for each such actor.

· Populate a use case diagram with these actors and specify the paths of communication

from each actor to the system's use cases.

For example, Figure shows the context of a credit card validation system, with anemphasis on the actors
that surround the system. You'll find Customers, of which there are two kinds (Individual customer and
Corporate customer). These actors are the roles that humans play when interacting with the system. In

this context, there are also actors that represent other institutions, such as Retail institution (with which a
Customer performs a card transaction to buy an item or a service) and Sponsoring financial institution

(which serves as the clearinghouse for the credit card account). In the real world, these latter two actors
are likely software-intensive systems themselves.

Figure Modeling the Context of a System

This same technique applies to modeling the context of a subsystem. A system at one level of abstraction
is often a subsystem of a larger system at a higher level of abstraction. Modeling the context of a
subsystem is therefore useful when you are building systems of interconnected systems.

Modeling the Requirements of a System

A requirement is a design feature, property, or behavior of a system. When you state a system's

requirements, you are asserting a contract, established between those things that lie outside the system

and the system itself, which declares what you expect that system to do. For the most part, you don't care

how the system does it, you just care that it does it. A well-behaved system will carry out all its

requirements faithfully, predictably, and reliably. When you build a system, it's important to start with

agreement about what that system should do, although you will certainly evolve your understanding of

those requirements as you iteratively and incrementally implementthe system. Similarly, when you are

handed a system to use, knowing how it behaves is essential to using it properly.

Requirements can be expressed in various forms, from unstructured text to expressions in a formal
language, and everything in between. Most, if not all, of a system's functional requirements can be
expressed as use cases, and the UML's use case diagrams are essential for managing these requirements.

To model the requirements of a system,

· Establish the context of the system by identifying the actors that surround it.

· For each actor, consider the behavior that each expects or requires the system to

provide.

· Name these common behaviors as use cases.

· Factor common behavior into new use cases that are used by others; factor

variant behavior into new use cases that extend more main line flows.

· Model these use cases, actors, and their relationships in a use case diagram.

· Adorn these use cases with notes that assert nonfunctional requirements; you may have to

attach some of these to the whole system.

Figure expands on the previous use case diagram. Although it elides the relationshipsamong the actors
and the use cases, it adds additional use cases that are somewhat invisible to the average customer, yet
are essential behaviors of the system. This diagram is valuable because it offers a common starting place
for end users, domain experts, and developers to visualize, specify, construct, and document their
decisions about the functional requirements of this system. For example, Detect card fraud is a
behavior important to both the Retailinstitution and the Sponsoring financial institution. Similarly,
Report on account status is another behavior required of the system by the various institutions in
itscontext.

Figure Modeling the Requirements of a System

The requirement modeled by the use case Manage network outageis a bit different from allthe others
because it represents a secondary behavior of the system necessary for its reliable and continuous
operation.

This same technique applies to modeling the requirements of a subsystem.

Forward and Reverse Engineering

Most of the UML's other diagrams, including class, component, and statechart diagrams, are clear
candidates for forward and reverse engineering because each has an analog in the executable system.
Use case diagrams are a bit different in that they reflect rather than specify the implementation of a
system, subsystem, or class. Use cases describe how an element behaves, not how that behavior is
implemented, so it cannot be directly forward or reverse engineered.

Forward engineering is the process of transforming a model into code through a mapping to
animplementation language. A use case diagram can be forward engineered to form tests for the element

to which it applies. Each use case in a use case diagram specifies a flow of events (and variants of those flows),

and these flows specify how the element is expected to behave• that's something worthy of testing.

A well-structured use case will even specify pre- and postconditions that can be used to define a test's

initial state and its success criteria. For each use case in a use case diagram, you can create a test case that

you can run every time you release a new version of that element, thereby confirming that it works as

required before other elements rely on it.

To forward engineer a use case diagram,

· For each use case in the diagram, identify its flow of events and its exceptional flow
of events.

· Depending on how deeply you choose to test, generate a test script for each flow, using the

flow's preconditions as the test's initial state and its postconditions as its success criteria.

· As necessary, generate test scaffolding to represent each actor that interacts with the use

case. Actors that push information to the element or are acted on by the element may either
be simulated or substituted by its real-world equivalent.

· Use tools to run these tests each time you release the element to which the use case

diagram applies.

Reverse engineering is the process of transforming code into a model through a mapping from aspecific

implementation language. Automatically reverse engineering a use case diagram is pretty much beyond

the state of the art, simply because there is a loss of information when moving from a specification of how

an element behaves to how it is implemented. However, you can study an existing system and discern its

intended behavior by hand, which you can then put in the form of a use case diagram. Indeed, this is pretty

much what you have to do anytime you are handed an undocumented body of software. The UML's use

case diagrams simply give you a standard and expressive language in which to state what you discover.

To reverse engineer a use case diagram,

· Identify each actor that interacts with the system.

· For each actor, consider the manner in which that actor interacts with the system,

changes the state of the system or its environment, or responds to some event.

· Trace the flow of events in the executable system relative to each actor. Start with

primary flows and only later consider alternative paths.

· Cluster related flows by declaring a corresponding use case. Consider modeling variants using

extend relationships, and consider modeling common flows by applying include relationships.

· Render these actors and use cases in a use case diagram, and establish

their relationships.

Activity Diagrams

Terms and Concepts

An activity diagram shows the flow from activity to activity. An is an ongoing nonatomic execution
within a state machine. Activities ultimately result in some action, which is made up of executable atomic
computations that result in a change in state of the system or the return of a value. Actions encompass
calling another operation, sending a signal, creating or destroying an object, or some pure computation,
such as evaluating an expression. Graphically, an activity diagram is a collection of vertices and arcs.

Common Properties

An activity diagram is just a special kind of diagram and shares the same common properties as do all other

diagrams• a name and graphical contents that are a projection into a model. What distinguishes an

interaction diagram from all other kinds of diagrams is its content.

Contents

Activity diagrams commonly contain

· Activity states and action states

· Transitions

· Objects

Like all other diagrams, activity diagrams may contain notes and constraints.

Action States and Activity States

In the flow of control modeled by an activity diagram, things happen. You might evaluate some

expression that sets the value of an attribute or that returns some value. Alternately, you might call an

operation on an object, send a signal to an object, or even create or destroy an object.These executable,

atomic computations are called action states because they are states of the system, each representing

the execution of an action. As Figure shows, you represent an action state using a lozenge shape (a

symbol with horizontal top and bottom and convex sides). Inside that shape, you may write any

expression.

Figure Action States

Action states can't be decomposed. Furthermore, action states are atomic, meaning that events may occur,
but the work of the action state is not interrupted. Finally, the work of an action state is generally
considered to take insignificant execution time.

In contrast, activity states can be further decomposed, their activity being represented by other activity

diagrams. Furthermore, activity states are not atomic, meaning that they may be interrupted and, in
general, are considered to take some duration to complete. You can think of an action state as a special

case of an activity state. An action state is an activity state that cannot be further decomposed. Similarly,

you can think of an activity state as a composite, whose flow of control is made up of other activity states
and action states. Zoom into the details of an activity state, and you'll find another activity diagram. As

Figure shows, there's no notational distinction between action and activity states, except that an activity
state may have additional parts, such as entry and exit actions (actions which are involved on entering and

leaving the state, respectively) and submachine specifications.

Figure Activity States

Transitions

When the action or activity of a state completes, flow of control passes immediately to the next action or
activity state. You specify this flow by using transitions to show the path from one action or activity state

to the next action or activity state. In the UML, you represent a transition as a simple directed line, as

Figure shows.

Figure Triggerless Transitions

Indeed, a flow of control has to start and end someplace (unless, of course, it's an infinite flow, in which
case it will have a beginning but no end). Therefore, as the figure shows, you may specify this initial
state (a solid ball) and stop state (a solid ball inside a circle).

Branching

Simple, sequential transitions are common, but they aren't the only kind of path you'll need to model a

flow of control. As in a flowchart, you can include a branch, which specifies alternate paths taken based

on some Boolean expression. As Figure shows, you represent a branch as a diamond. A branch may have

one incoming transition and two or more outgoing ones. On each outgoing transition, you place a Boolean

expression, which is evaluated only once on entering the branch. Across all these outgoing transitions,

guards should not overlap (otherwise, the flow of control would be ambiguous), but they should cover all

possibilities (otherwise, the flow of control would freeze).

Figure Branching

As a convenience, you can use the keyword elseto mark one outgoing transition, representingthe path

taken if no other guard expression evaluates to true.You can achieve the effect of iteration by using one

action state that sets the value of an iterator, another action state that increments the iterator, and a

branch that evaluates if the iteration is finished.

Forking and Joining

Simple and branching sequential transitions are the most common paths you'll find in activity diagrams.
However• especially when you are modeling workflows of business processes• you might encounter
flows that are concurrent. In the UML, you use a synchronization bar to specify the forking and joining of
these parallel flows of control. A synchronization bar is rendered as a thick horizontal or vertical line.

For example, consider the concurrent flows involved in controlling an audio-animatronic device that

mimics human speech and gestures. As Figure shows, a fork represents the splitting of a single flow of
control into two or more concurrent flows of control. A fork may have one incoming transition and two or
more outgoing transitions, each of which represents an independent flow of control. Below the fork, the
activities associated with each of these paths continues in parallel. Conceptually, the activities of each of

these flows are truly concurrent, although, in a running system, these flows may be either truly concurrent
(in the case of a system deployed across multiple nodes) or sequential yet interleaved (in the case of a
system deployed across one node), thus giving only the illusion of true concurrency.

Figure Forking and Joining

As the figure also shows, a join represents the synchronization of two or more concurrent flows of control.

A join may have two or more incoming transitions and one outgoing transition. Above the join, the
activities associated with each of these paths continues in parallel. At the join, the concurrent flows
synchronize, meaning that each waits until all incoming flows have reached the join, at which point one
flow of control continues on below the join.

Swimlanes

You'll find it useful, especially when you are modeling workflows of business processes, to

partition the activity states on an activity diagram into groups, each group representing the

business organization responsible for those activities. In the UML, each group is called a

swimlane because, visually, each group is divided from its neighbor by a vertical solid line, as

shown in Figure . A swimlane specifies a locus of activities.

FigureSwimlanes

Each swimlane has a name unique within its diagram. A swimlane really has no deep semantics, except

that it may represent some real-world entity. Each swimlane represents a high-level responsibility for part

of the overall activity of an activity diagram, and each swimlane mayeventually be implemented by one or

more classes. In an activity diagram partitioned into swimlanes, every activity belongs to exactly one

swimlane, but transitions may cross lanes.

Object Flow

Objects may be involved in the flow of control associated with an activity diagram. For example, in the
workflow of processing an order as in the previous figure, the vocabulary of your problem space will also
include such classes as Order and Bill. Instances of these two classes will be produced by certain
activities (Process order will create an Order object, for example); other activities may modify these
objects (for example, Ship order will change the state of the Order object to filled).

As Figure shows, you can specify the things that are involved in an activity diagram by placing these

objects in the diagram, connected using a dependency to the activity or transition that creates, destroys,

or modifies them. This use of dependency relationships and objects is called an object flow because it

represents the participation of an object in a flow of control.

Figure Object Flow

In addition to showing the flow of an object through an activity diagram, you can also show how its

role, state and attribute values change. As shown in the figure, you represent the state of an object by

naming its state in brackets below the object's name. Similarly, you can represent the value of an

object's attributes by rendering them in a compartment below the object's name.

Common Uses

You use activity diagrams to model the dynamic aspects of a system. These dynamic aspects may involve

the activity of any kind of abstraction in any view of a system's architecture, including classes (which
includes active classes), interfaces, components, and nodes.

When you use an activity diagram to model some dynamic aspect of a system, you can do so in the
context of virtually any modeling element. Typically, however, you'll use activity diagrams in the context

of the system as a whole, a subsystem, an operation, or a class. You can also attach activity diagrams to
use cases (to model a scenario) and to collaborations (to model the dynamic aspects of a society of
objects).

When you model the dynamic aspects of a system, you'll typically use activity diagrams in two ways.

1. To model a workflow

Here you'll focus on activities as viewed by the actors that collaborate with the system. Workflows often

lie on the fringe of software-intensive systems and are used to visualize, specify, construct, and document

business processes that involve the system you are developing. In this use of activity diagrams, modeling
object flow is particularly important.

2. To model an operation

Here you'll use activity diagrams as flowcharts, to model the details of a computation. In this use of
activity diagrams, the modeling of branch, fork, and join states is particularly important. The context of
an activity diagram used in this way involves the parameters of the operation and its local objects.

Common Modeling Techniques

Modeling a Workflow

To model a workflow,

· Establish a focus for the workflow. For nontrivial systems, it's impossible to show all

interesting workflows in one diagram.

· Select the business objects that have the high-level responsibilities for parts of the overall

workflow. These may be real things from the vocabulary of the system, or they may be

more abstract. In either case, create a swimlane for each important business object.

· Identify the preconditions of the workflow's initial state and the postconditions of
the workflow's final state. This is important in helping you model the boundaries of
the workflow.

· Beginning at the workflow's initial state, specify the activities and actions that take place

over time and render them in the activity diagram as either activity states or action states.

· For complicated actions, or for sets of actions that appear multiple times, collapse these

into activity states, and provide a separate activity diagram that expands on each.

· Render the transitions that connect these activity and action states. Start with the

sequential flows in the workflow first, next consider branching, and only then consider
forking and joining.

· If there are important objects that are involved in the workflow, render them in the activity

diagram, as well. Show their changing values and state as necessary to communicate the intent of
the object flow.

For example, Figure shows an activity diagram for a retail business, which specifies theworkflow
involved when a customer returns an item from a mail order. Work starts with theCustomer action

Request return and then flows through Telesales (Get return number), back to the Customer (Ship
item), then to the Warehouse (Receive item then Restock item), finally ending in Accounting
(Credit account). As the diagramindicates,one significant object (i, an instance of Item) also flows

the process, changing from the returned to the available state.

Figure Modeling a Workflow

Modeling an Operation

To model an operation,

· Collect the abstractions that are involved in this operation. This includes the operation's
parameters (including its return type, if any), the attributes of the enclosing class, and
certain neighboring classes.

· Identify the preconditions at the operation's initial state and the postconditions at the

operation's final state. Also identify any invariants of the enclosing class that must hold
during the execution of the operation.

· Beginning at the operation's initial state, specify the activities and actions that take place

over time and render them in the activity diagram as either activity states or action states.

· Use branching as necessary to specify conditional paths and iteration.

· Only if this operation is owned by an active class, use forking and joining as necessary to

specify parallel flows of control.

For example, in the context of the class Line, Figure shows an activity diagram that specifies the
algorithm of the operation intersection, whose signature includes one parameter (l, an in parameter of the
class Line) and one return value (of the class Point). The class Line has two attributes of interest: slope
(which holds the slope of the line) and delta (which holds the offset of the line relative to the origin).

Figure Modeling an Operation

The algorithm of this operation is simple, as shown in the following activity diagram. First, there's a guard

that tests whether the slope of the current line is the same as the slope of parameter l. If so, the lines do not
intersect, and a Point at (0,0) is returned. Otherwise, the operationfirst calculates an x value for the point
of intersection, then a y value; x and yare both objects local to the operation. Finally, a Point at (x,y) is
returned.

Forward and Reverse Engineering

Forward engineering (the creation of code from a model) is possible for activity diagrams,especially if
the context of the diagram is an operation. For example, using the previous activity diagram, a forward
engineering tool could generate the following C++ code for the operation intersection.

Point Line::intersection (l : Line) {
if (slope == l.slope) return Point(0,0);

int x = (l.delta - delta) / (slope - l.slope); int y = (slope * x) + delta;
return Point(x, y);
}

There's a bit of cleverness here, involving the declaration of the two local variables. A less-

sophisticated tool might have first declared the two variables and then set their values.

Reverse engineering (the creation of a model from code) is also possible for activity
diagrams,especially if the context of the code is the body of an operation. In particular, the previous
diagram could have been generated from the implementation of the class Line.

More interesting than the reverse engineering of a model from code is the animation of a model against
the execution of a deployed system. For example, given the previous diagram, a tool could animate the
action states in the diagram as they were dispatched in a running system. Even better, with this tool also
under the control of a debugger, you could control the speed of execution, possibly setting breakpoints to
stop the action at interesting points in time to examine the attribute values of individual objects.

	page20
	page95
	page96
	page97
	page98
	page99
	page100
	page101
	page102
	page103
	page104
	page105
	page106
	page107
	page108
	page109
	page110
	page111
	page112
	page113
	page114
	page115
	page116
	page117
	page118
	page119
	page120
	page121
	page122
	page123
	page124
	page125
	page126
	page127
	page128
	page129
	page130
	page131
	page132
	page133
	page134
	page135

