
Red Black Tree 

Red black tree is another variant of binary search tree in which every node is colored either red or black 

we can define a red black tree as follows: 

Red black tree is a binary search tree in which every node is colored either red or black. 

A red-black tree's node structure would be:  

struct t_red_black_node { 

    enum { red, black } colour; 

    void *item; 

    struct t_red_black_node *left, 

                     *right, 

                     *parent; 

    } 

In red black tree the color of node is decided based on the properties of red black tree. Every red black 

tree has the following properties: 

1. Red black tree must be a binary search tree. 

2.The root node must be colored black. 

3. The children of red color node must be colored black. There should not be two consecutive red nodes. 

4. In all the paths of the tree there should be same number of black color nodes. 

5. Every new node must be inserted with red color. 

6. Every leaf( i.e null node) must be colored black. 

Example: 

Following is a red black tree which is created by inserting number from 1 to 9. 

 

The above tree is a red black tree where every node is satisfying all the properties of red black tree. 
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Insertion into red black tree: 

In a red black tree, every new node must be inserted with the color red. The insertion operation in red 

black tree is similar to insertion operation in binary search tree. But it is inserted with a color property. 

After every insertion operation, we need to check all the properties of red black tree. If all the properties 

are satisfied then we go to next operation otherwise we perform the following operation to make it red 

black tree. 

The operations are 

1. Recolor 

2. Rotation 

3. Rotation followed by recolor. 

The insertion operation in red black tree is performed using the following steps: 

Step 1: Check whether tree is empty. 

Step2: If tree is empty when insert the newnode as root node with color black an exit from the 

operation. 

Step3: If tree is not empty then insert the newnode as leaf node with color red. 

Step4: If the parent of newnode is black then exit from the operation. 

Step5: If the parent of newnode is r red then change the color of parent node’s sibling of newnode. 

Step6: If it is colored black or null then make suitable rotation and recolor it. 

Step7: If it is colored red then perform recolor. 

Repeat the same until tree becomes red black tree. 

Example: 

Create a red black tree by inserting following sequence of number :- 

8, 18, 5, 15, 17, 25, 40, and 80 

Insert (8) 

Tree is empty. So insert newnode as root node with black color. 
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Insert (18) 

Tree is not empty. So insert newnode with red color. 

 

 

 

 

 

 

Insert (5) 

Tree is not empty. So insert newnode with red color. 

 

 

 

 

Insert (15) 

Tree is not empty. So insert newnode with red color. 

 

 

 

 

 

                                                After recolor 
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Here there are two consecutive red nodes 18 and 15. 

The newnode’s parent sibling color is red and 

parent’s parent is root node. So we use recolor to 

make it red black tree. 
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After recolor operation, the trees satisfying 

all red black tree properties. 

 



Insert (17) 

The tree is not empty. So insert newnode with red color. 

 

 

 

 

 

 

 

                                 After left rotation 

 

 

 

                                                                                                                                         After right rotation and recolor 

                                 

 

 

 

 

 

Insert (25) 

Tree is not empty. So insert newnode with red color. 
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Here there two consecutive red nodes 15 and 

17.The newnode’s parent sibling is null. So we 

need rotation. Here we need LR rotation and 

recolor. 
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There are two consecutive red nodes 18 and 

25. The newnode’s parent sibling color is red 

and parent’s parent is not root node. So we 

use recolor and recheck. 

 



                                              After recolor 

 

 

 

 

 

 

 

 

Insert( 40) 

Tree is not empty. So insert newnode with red color. 

 

 

 

 

 

 

 

 

 

 

                 After LL rotation and recolor 
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After recolor operation, the tree is 

satisfying all red black tree properties. 
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Here there are two consecutive red nodes 

25 and 40. The newnode’s parent sibling is 

null. So we need rotation and recolor. 

Here we use LL rotation and recheck. 
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After LL rotation and recolor operation, 

the tree satisfying all red black tree 

properties. 
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Insert(80) 

Tree is not empty. So insert newnode with red color. 

 

 

 

 

 

 

 

 

 

 

                                        After recolor 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     After left rotation And recolor 
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There are two consecutive red nodes 40 and 

80. The newnodes parent sibling color is red 

and parent’s parent is not root node. So we 

use recolor and recheck. 
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After recolor again there are two consecutive 

red nodes 17 and 25. The newnode’s parent 

sibling color is black. So we need rotation. 

We use left rotation And recolor. 
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Finally  above tree is satisfying all the properties of red black tree and it is a perfect red black tree. 

 

Deletion operation in red black tree 

The deletion operation in red black tree is similar to deletion operation in BST. But after every deletion 

operation we need to check with the red black tree properties. If any of the properties violated then 

make suitable operations like recolor, rotation and rotation followed by recolor to make it red black 

tree. 

Operations on Red Black Tree in details: 

Rotations: 

A rotation is a local operation in a search tree that preserves in-order traversal key ordering.  

Note that in both trees, an in-order traversal yields: 

A x B y C 

 

The left_rotate operation may be encoded:  

left_rotate( Tree T, node x ) { 

    node y; 

    y = x->right; 

    /* Turn y's left sub-tree into x's right sub-tree */ 

    x->right = y->left; 

    if ( y->left != NULL ) 

        y->left->parent = x; 

    /* y's new parent was x's parent */ 

    y->parent = x->parent; 
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    /* Set the parent to point to y instead of x */ 

    /* First see whether we're at the root */ 

    if ( x->parent == NULL ) T->root = y; 

    else 

        if ( x == (x->parent)->left ) 

            /* x was on the left of its parent */ 

            x->parent->left = y; 

        else 

            /* x must have been on the right */ 

            x->parent->right = y; 

    /* Finally, put x on y's left */ 

    y->left = x; 

    x->parent = y; 

    } 

Insertion: 

Insertion is somewhat complex and involves a number of cases. Note that we start by inserting the new 

node, x, in the tree just as we would for any other binary tree, using the tree_insert function. This 

new node is labelled red, and possibly destroys the red-black property. The main loop moves up the 

tree, restoring the red-black property.  

Algorithm to Insert a New Node 

Following steps are followed for inserting a new element into a red-black tree: 

1. The newNode be: 

 
2. Let y be the leaf (ie. NIL) and x be the root of the tree. The new node is inserted in the 

following tree. 

 



3. Check if the tree is empty (ie. whether x is NIL). If yes, insert newNode as a root node and color 
it black. 

4. Else, repeat steps following steps until leaf (NIL) is reached.  
a. Compare newKey with rootKey. 
b. If newKey is greater than rootKey, traverse through the right subtree. 
c. Else traverse through the left subtree. 

 
5. Assign the parent of the leaf as parent of newNode. 
6. If leafKey is greater than newKey, make newNode as rightChild. 
7. Else, make newNode as leftChild. 

 
8. Assign NULL to the left and rightChild of newNode. 
9. Assign RED color to newNode. 

 



10. Call InsertFix-algorithm to maintain the property of red-black tree if violated. 

 

Why newly inserted nodes are always red in a red-black tree? 

This is because inserting a red node does not violate the depth property of a red-black tree. 

If you attach a red node to a red node, then the rule is violated but it is easier to fix this problem 

than the problem introduced by violating the depth property. 

 

Algorithm to Maintain Red-Black Property After Insertion 

This algorithm is used for maintaining the property of a red-black tree if insertion of a newNode 

violates this property. 

1. Do the following until the parent of newNode p is RED. 
2. If p is the left child of grandParent gP of newNode, do the following. 

Case-I:  
a. If the color of the right child of gP of newNode is RED, set the color of both the children 

of gP as BLACK and the color of gP as RED. 

 



b. Assign gP to newNode. 

 
Case-II: 

c. (Before moving on to this step, while loop is checked. If conditions are not satisfied, it 
the loop is broken.) 
Else if newNode is the right child of p then, assign p to newNode. 

 



d. Left-Rotate newNode. 

 
Case-III: 

e. (Before moving on to this step, while loop is checked. If conditions are not satisfied, it 
the loop is broken.) 
Set color of p as BLACK and color of gP as RED. 

 



f. Right-Rotate gP. 

 
3. Else, do the following.  

a. If the color of the left child of gP of z is RED, set the color of both the children of gP as 
BLACK and the color of gP as RED. 

b. Assign gP to newNode. 
c. Else if newNode is the left child of p then, assign p to newNode and Right-Rotate 

newNode. 
d. Set color of p as BLACK and color of gP as RED. 
e. Left-Rotate gP. 

4. (This step is perfomed after coming out of the while loop.) 
Set the root of the tree as BLACK. 

 

The final tree look like this: 



 

 

 

The insertion operation is encoded as:  

 

rb_insert( Tree T, node x ) { 

    /* Insert in the tree in the usual way */ 

    tree_insert( T, x ); 

    /* Now restore the red-black property */ 

    x->colour = red; 

    while ( (x != T->root) && (x->parent->colour == red) ) { 

       if ( x->parent == x->parent->parent->left ) { 

           /* If x's parent is a left, y is x's right 'uncle' */ 

           y = x->parent->parent->right; 

           if ( y->colour == red ) { 

               /* case 1 - change the colours */ 

               x->parent->colour = black; 

               y->colour = black; 

               x->parent->parent->colour = red; 

               /* Move x up the tree */ 

               x = x->parent->parent; 

               } 

           else { 

               /* y is a black node */ 

               if ( x == x->parent->right ) { 

                   /* and x is to the right */  

                   /* case 2 - move x up and rotate */ 

                   x = x->parent; 

                   left_rotate( T, x ); 

                   } 



               /* case 3 */ 

               x->parent->colour = black; 

               x->parent->parent->colour = red; 

               right_rotate( T, x->parent->parent ); 

               } 

           } 

       else { 

           /* repeat the "if" part with right and left 

              exchanged */ 

           }  

       } 

    /* Colour the root black */ 

    T->root->colour = black; 

    } 

        

           Examination of the code reveals only one loop. In that loop, the node at the root of the 

sub-tree whose red-black property we are trying to restore, x, may be moved up the tree at least 

one level in each iteration of the loop. Since the tree originally has O(log n) height, there are 

O(log n) iterations. The tree_insert routine also has O(log n) complexity, so overall the rb_insert 

routine also has O(log n) complexity.  

Red-black trees: 

Trees which remain balanced - and thus guarantee O(logn) search times - in a dynamic 

environment. Or more importantly, since any tree can be re-balanced - but at considerable 

cost - can be re-balanced in O(logn) time.  

 

 

 

 

 

 

Applications: 

Red black tree offer worst case guarantee for insertion time, deletion time and search time. Not only 

does this make them valuable in time sensitive applications such as real time applications but it makes 

them valuable building blocks in other data structures which provide worst case guarantees. 

1. Most of the self-balancing BST library functions like map and set in C++ (OR TreeSet and 

TreeMap in Java) use Red Black Tree 

2. It is used to implement CPU Scheduling Linux. Completely Fair Scheduler uses it. 

 

 
 

Time complexity in big O notation 

Algorithm  Average Worst case 

Space  O(n) O(n) 

Search  O(log n)[1] O(log n)[1] 

Insert  O(log n)[1] O(log n)[1] 

Delete  O(log n)[1] O(log n)[1] 
 


