

Raja N.L.Khan Women’s College (Autonomous)

Department of BCA
2nd Semester

Paper: C3T
Prepared By: Moumita Mondal

JAVA - PACKAGES:

What is package:

Packages are used in Java, in-order to avoid name conflicts and to control access of
class, interface and enumeration etc. A package can be defined as a group of similar
types of classes, interface, enumeration or sub-package.

 Using package it becomes easier to locate the related classes and it

also provides a good structure for projects with hundreds of classes and other files.

Benefits of using package in java:

1) Java package is used to categorize the classes and interfaces so that they can
be easily maintained.
2) Java package provides access protection.
3) Java package removes naming collision.
4) This packages can be provide reusability of code.
5) We can create our own package or extend already available package.

Java Packages: Types:

• Built-in Package: Existing Java package for
example java.lang, java.util ,java.io etc.

• User-defined-package: Java package created by user to categorize their
project's classes and interface.

How to Create a package:

Creating a package in java is quite easy. Simply include a package command
followed by name of the package as the first statement in java source file.

package mypackage;

public class student

{

Statement;

}

The above statement will create a package name mypackage in the project
directory.

Java uses file system directories to store packages. For example the .java file for
any class you define to be part of mypackage package must be stored in
a directory called mypackage.

Additional points about package:

• A package is always defined as a separate folder having the same name as
the package name.

• Store all the classes in that package folder.
• All classes of the package which we wish to access outside the package must

be declared public.
• All classes within the package must have the package statement as its first

line.
• All classes of the package must be compiled before use (So that they are

error free)

Example of Java packages:

Package mypack;

public class Simple

{

 public static void main(String args[])

 {

 System.out.println("Welcome to package");

 }

}

How to compile Java packages:

This is just like compiling a normal java program. If you are not using any IDE, you
need to follow the steps given below to successfully compile your packages:

1. java -d directory javafilename

For example

javac -d . Simple.java

The -d switch specifies the destination where to put the generated class file. You can
use any directory name like /home (in case of Linux), d:/abc (in case of windows)
etc. If you want to keep the package within the same directory, you can use . (dot).

How to run java package program:
You need to use fully qualified name e.g. mypack.Simple etc to run the class.

To Compile: javac -d . Simple.java

To Run: java mypack.Simple

Output: Welcome to package

The -d is a switch that tells the compiler where to put the class file i.e.
it represents destination. The . represents the current folder.

How to access package from another package:
There are three ways to access the package from outside the package.

1. import package.*;
2. import package.classname;
3. fully qualified name.

1) Using packagename.*:

If you use package.* then all the classes and interfaces of this package will be
accessible but not subpackages.

The import keyword is used to make the classes and interface of another package
accessible to the current package.

Example of package that import the packagename.*:

//save by A.java

package pack;

public class A

{

 public void msg()

{

System.out.println("Hello java");}

}

//save by B.java

package mypack;

import pack.*;

 class B

{

 public static void main(String args[])

{

 A obj = new A();

 obj.msg();

 }

}
Output: Hello java

2) Using packagename.classname:

If you import package.classname then only declared class of this package will be
accessible.

Example of package by import package.classname:

//save by A.java

package pack;

public class A

{

 public void msg()

{

System.out.println("Hello");}

}

//save by B.java

package mypack;

import pack.A;

class B

{

 public static void main(String args[])

{

 A obj = new A();

 obj.msg();

 }

}

Output: Hello

3) Using fully qualified name:

If you use fully qualified name then only declared class of this package will be
accessible. Now there is no need to import. But you need to use fully qualified name
every time when you are accessing the class or interface.

It is generally used when two packages have same class name e.g. java.util and
java.sql packages contain Date class.

Example of package by import fully qualified name:

//save by A.java

package pack;

public class A

{

 public void msg()

{

System.out.println("Hello");}

}

//save by B.java

package mypack;

class B

{

 public static void main(String args[])

{

 pack.A obj = new pack.A(); //using fully qualified name

 obj.msg();

 }

}

Output: Hello

Note: If you import a package, subpackages will not be imported.

If you import a package, all the classes and interface of that package will be
imported excluding the classes and interfaces of the subpackages. Hence, you need
to import the subpackage as well.

Subpackage in java:

Package inside the package is called the subpackage. It should be created to
categorize the package further.

Let's take an example, Sun Microsystem has definded a package named java that
contains many classes like System, String, Reader, Writer, Socket etc. These
classes represent a particular group e.g. Reader and Writer classes are for
Input/Output operation, Socket and ServerSocket classes are for networking etc and
so on. So, Sun has subcategorized the java package into subpackages such as lang,
net, io etc. and put the Input/Output related classes in io package, Server and
ServerSocket classes in net packages and so on.

package com.javatpoint.core;

class Simple{

 public static void main(String args[]){

 System.out.println("Hello subpackage");

 }

}

To Compile: javac -d . Simple.java

To Run: java com.javatpoint.core.Simple

 Output: Hello subpackage

How to send the class file to another directory or drive:

There is a scenario, I want to put the class file of A.java source file in classes folder
of c: drive.

 For example:
//save as Simple.java
package mypack;
public class Simple
{
 public static void main(String args[])
{
System.out.println("Welcome to package");
 }

}

To Compile:

e:\sources> javac -d c:\classes Simple.java

To Run:

To run this program from e:\source directory, you need to set classpath of the directory

 where the class file resides.

e:\sources> set classpath=c:\classes;.;

e:\sources> java mypack.Simple

Another way to run this program by -classpath switch of java:

The -classpath switch can be used with javac and java tool.

To run this program from e:\source directory, you can use -classpath switch of java
that tells where to look for class file. For example:

e:\sources> java -classpath c:\classes mypack.Simple

Output: Welcome to package

