

Software analysis and design tools

Software analysis and design is the intermediate stage, which helps human-readable requirements to
be transformed into actual code.

Let us see few analysis and design tools used by software designers:

Data Flow Diagram

Data flow diagram is graphical representation of flow of data in an information system. It is capable of
depicting incoming data flow, outgoing data flow and stored data. The DFD does not mention anything
about how data flows through the system.

There is a prominent difference between DFD and Flowchart. The flowchart depicts flow of control in
program modules. DFDs depict flow of data in the system at various levels. DFD does not contain any
control or branch elements.

Types of DFD

Data Flow Diagrams are either Logical or Physical.

• Logical DFD - This type of DFD concentrates on the system process, and flow of data in the system.For
example in a Banking software system, how data is moved between different entities.

• Physical DFD - This type of DFD shows how the data flow is actually implemented in the system. It is more
specific and close to the implementation.

DFD Components

DFD can represent Source, destination, storage and flow of data using the following set of components
-

• Entities - Entities are source and destination of information data. Entities are represented by a rectangles
with their respective names.

• Process - Activities and action taken on the data are represented by Circle or Round-edged rectangles.

• Data Storage - There are two variants of data storage - it can either be represented as a rectangle with
absence of both smaller sides or as an open-sided rectangle with only one side missing.

• Data Flow - Movement of data is shown by pointed arrows. Data movement is shown from the base of
arrow as its source towards head of the arrow as destination.

Levels of DFD

• Level 0 - Highest abstraction level DFD is known as Level 0 DFD, which depicts the entire information
system as one diagram concealing all the underlying details. Level 0 DFDs are also known as context level
DFDs.

• Level 1 - The Level 0 DFD is broken down into more specific, Level 1 DFD. Level 1 DFD depicts basic
modules in the system and flow of data among various modules. Level 1 DFD also mentions basic
processes and sources of information.

• Level 2 - At this level, DFD shows how data flows inside the modules mentioned in Level 1.

Higher level DFDs can be transformed into more specific lower level DFDs with deeper level of understanding
unless the desired level of specification is achieved.

Structure Charts

Structure chart is a chart derived from Data Flow Diagram. It represents the system in more detail than
DFD. It breaks down the entire system into lowest functional modules, describes functions and sub-
functions of each module of the system to a greater detail than DFD.

Structure chart represents hierarchical structure of modules. At each layer a specific task is performed.

Here are the symbols used in construction of structure charts -

• Module - It represents process or subroutine or task. A control module branches to more than one sub-
module. Library Modules are re-usable and invokable from any module.

• Condition - It is represented by small diamond at the base of module. It depicts that control module can

select any of sub-routine based on some condition.

• Jump - An arrow is shown pointing inside the module to depict that the control will jump in the middle of the

sub-module.

• Loop - A curved arrow represents loop in the module. All sub-modules covered by loop repeat execution of

module.

• Data flow - A directed arrow with empty circle at the end represents data flow.

• Control flow - A directed arrow with filled circle at the end represents control flow.

HIPO Diagram

HIPO (Hierarchical Input Process Output) diagram is a combination of two organized method to
analyze the system and provide the means of documentation. HIPO model was developed by IBM in
year 1970.

HIPO diagram represents the hierarchy of modules in the software system. Analyst uses HIPO
diagram in order to obtain high-level view of system functions. It decomposes functions into sub-
functions in a hierarchical manner. It depicts the functions performed by system.

HIPO diagrams are good for documentation purpose. Their graphical representation makes it easier
for designers and managers to get the pictorial idea of the system structure.

In contrast to IPO (Input Process Output) diagram, which depicts the flow of control and data in a
module, HIPO does not provide any information about data flow or control flow.

Example

Both parts of HIPO diagram, Hierarchical presentation and IPO Chart are used for structure design of
software program as well as documentation of the same.

Structured English

Most programmers are unaware of the large picture of software so they only rely on what their
managers tell them to do. It is the responsibility of higher software management to provide accurate
information to the programmers to develop accurate yet fast code.

Other forms of methods, which use graphs or diagrams, may are sometimes interpreted differently by
different people.

Hence, analysts and designers of the software come up with tools such as Structured English. It is
nothing but the description of what is required to code and how to code it. Structured English helps
the programmer to write error-free code.

Other form of methods, which use graphs or diagrams, may are sometimes interpreted differently by
different people. Here, both Structured English and Pseudo-Code tries to mitigate that understanding
gap.

Structured English is the It uses plain English words in structured programming paradigm. It is not the
ultimate code but a kind of description what is required to code and how to code it. The following are
some tokens of structured programming.

IF-THEN-ELSE,

DO-WHILE-UNTIL

Analyst uses the same variable and data name, which are stored in Data Dictionary, making it much
simpler to write and understand the code.

Example

We take the same example of Customer Authentication in the online shopping environment. This
procedure to authenticate customer can be written in Structured English as:

Enter Customer_Name

SEEK Customer_Name in Customer_Name_DB file

IF Customer_Name found THEN

 Call procedure USER_PASSWORD_AUTHENTICATE()

ELSE

 PRINT error message

 Call procedure NEW_CUSTOMER_REQUEST()

ENDIF

The code written in Structured English is more like day-to-day spoken English. It can not be
implemented directly as a code of software. Structured English is independent of programming
language.

Pseudo-Code

Pseudo code is written more close to programming language. It may be considered as augmented
programming language, full of comments and descriptions.

Pseudo code avoids variable declaration but they are written using some actual programming
language’s constructs, like C, Fortran, Pascal etc.

Pseudo code contains more programming details than Structured English. It provides a method to
perform the task, as if a computer is executing the code.

Example

Program to print Fibonacci up to n numbers.

void function Fibonacci

Get value of n;

Set value of a to 1;

Set value of b to 1;

Initialize I to 0

for (i=0; i< n; i++)

{

 if a greater than b

 {

 Increase b by a;

 Print b;

 }

 else if b greater than a

 {

 increase a by b;

 print a;

 }

}

Decision Tables

A Decision table represents conditions and the respective actions to be taken to address them, in a
structured tabular format.

It is a powerful tool to debug and prevent errors. It helps group similar information into a single table
and then by combining tables it delivers easy and convenient decision-making.

Creating Decision Table

To create the decision table, the developer must follow basic four steps:

• Identify all possible conditions to be addressed

• Determine actions for all identified conditions

• Create Maximum possible rules

• Define action for each rule

Decision Tables should be verified by end-users and can lately be simplified by eliminating duplicate
rules and actions.

Example

Let us take a simple example of day-to-day problem with our Internet connectivity. We begin by
identifying all problems that can arise while starting the internet and their respective possible solutions.

We list all possible problems under column conditions and the prospective actions under column
Actions.

 Conditions/Actions Rules

Conditions

Shows Connected N N N N Y Y Y Y

Ping is Working N N Y Y N N Y Y

Opens Website Y N Y N Y N Y N

Actions

Check network cable X

Check internet router X X X X

Restart Web Browser X

Contact Service

provider
 X X X X X X

Do no action

Table : Decision Table – In-house Internet Troubleshooting

Entity-Relationship Model

Entity-Relationship model is a type of database model based on the notion of real world entities and
relationship among them. We can map real world scenario onto ER database model. ER Model creates
a set of entities with their attributes, a set of constraints and relation among them.

ER Model is best used for the conceptual design of database. ER Model can be represented as follows
:

• Entity - An entity in ER Model is a real world being, which has some properties called attributes. Every
attribute is defined by its corresponding set of values, called domain.

For example, Consider a school database. Here, a student is an entity. Student has various attributes like
name, id, age and class etc.

• Relationship - The logical association among entities is called relationship. Relationships are mapped with
entities in various ways. Mapping cardinalities define the number of associations between two entities.

Mapping cardinalities:

o one to one

o one to many

o many to one

o many to many

Data Dictionary

Data dictionary is the centralized collection of information about data. It stores meaning and origin of
data, its relationship with other data, data format for usage etc. Data dictionary has rigorous definitions
of all names in order to facilitate user and software designers.

Data dictionary is often referenced as meta-data (data about data) repository. It is created along with
DFD (Data Flow Diagram) model of software program and is expected to be updated whenever DFD
is changed or updated.

Requirement of Data Dictionary

The data is referenced via data dictionary while designing and implementing software. Data dictionary
removes any chances of ambiguity. It helps keeping work of programmers and designers synchronized
while using same object reference everywhere in the program.

Data dictionary provides a way of documentation for the complete database system in one place.
Validation of DFD is carried out using data dictionary.

Contents

Data dictionary should contain information about the following

• Data Flow

• Data Structure

• Data Elements

• Data Stores

• Data Processing

Data Flow is described by means of DFDs as studied earlier and represented in algebraic form as
described.

= Composed of

{} Repetition

() Optional

+ And

[/] Or

Example

Address = House No + (Street / Area) + City + State

Course ID = Course Number + Course Name + Course Level + Course Grades

Data Elements

Data elements consist of Name and descriptions of Data and Control Items, Internal or External data
stores etc. with the following details:

• Primary Name

• Secondary Name (Alias)

• Use-case (How and where to use)

• Content Description (Notation etc.)

• Supplementary Information (preset values, constraints etc.)

Data Store

It stores the information from where the data enters into the system and exists out of the system. The
Data Store may include -

• Files

o Internal to software.

o External to software but on the same machine.

o External to software and system, located on different machine.

• Tables

o Naming convention

o Indexing property

Data Processing

There are two types of Data Processing:

• Logical: As user sees it

• Physical: As software sees it

Software Design Strategies

Software design is a process to conceptualize the software requirements into software implementation. Software
design takes the user requirements as challenges and tries to find optimum solution. While the software is being
conceptualized, a plan is chalked out to find the best possible design for implementing the intended solution.

There are multiple variants of software design. Let us study them briefly:

Structured Design

Structured design is a conceptualization of problem into several well-organized elements of solution. It is basically
concerned with the solution design. Benefit of structured design is, it gives better understanding of how the problem
is being solved. Structured design also makes it simpler for designer to concentrate on the problem more accurately.

Structured design is mostly based on ‘divide and conquer’ strategy where a problem is broken into several small
problems and each small problem is individually solved until the whole problem is solved.

The small pieces of problem are solved by means of solution modules. Structured design emphasis that these
modules be well organized in order to achieve precise solution.

These modules are arranged in hierarchy. They communicate with each other. A good structured design always
follows some rules for communication among multiple modules, namely -

Cohesion - grouping of all functionally related elements.

Coupling - communication between different modules.

A good structured design has high cohesion and low coupling arrangements.

Function Oriented Design

In function-oriented design, the system is comprised of many smaller sub-systems known as functions. These
functions are capable of performing significant task in the system. The system is considered as top view of all
functions.

Function oriented design inherits some properties of structured design where divide and conquer methodology is
used.

This design mechanism divides the whole system into smaller functions, which provides means of abstraction by
concealing the information and their operation.. These functional modules can share information among themselves
by means of information passing and using information available globally.

Another characteristic of functions is that when a program calls a function, the function changes the state of the
program, which sometimes is not acceptable by other modules. Function oriented design works well where the
system state does not matter and program/functions work on input rather than on a state.

Design Process

• The whole system is seen as how data flows in the system by means of data flow diagram.

• DFD depicts how functions changes data and state of entire system.

• The entire system is logically broken down into smaller units known as functions on the basis of their
operation in the system.

• Each function is then described at large.

Object Oriented Design

Object oriented design works around the entities and their characteristics instead of functions involved in the software
system. This design strategies focuses on entities and its characteristics. The whole concept of software solution
revolves around the engaged entities.

Let us see the important concepts of Object Oriented Design:

• Objects - All entities involved in the solution design are known as objects. For example, person, banks,
company and customers are treated as objects. Every entity has some attributes associated to it and has
some methods to perform on the attributes.

• Classes - A class is a generalized description of an object. An object is an instance of a class. Class defines
all the attributes, which an object can have and methods, which defines the functionality of the object.

In the solution design, attributes are stored as variables and functionalities are defined by means of methods
or procedures.

• Encapsulation - In OOD, the attributes (data variables) and methods (operation on the data) are bundled
together is called encapsulation. Encapsulation not only bundles important information of an object together,
but also restricts access of the data and methods from the outside world. This is called information hiding.

• Inheritance - OOD allows similar classes to stack up in hierarchical manner where the lower or sub-classes
can import, implement and re-use allowed variables and methods from their immediate super classes. This
property of OOD is known as inheritance. This makes it easier to define specific class and to create
generalized classes from specific ones.

• Polymorphism - OOD languages provide a mechanism where methods performing similar tasks but vary in
arguments, can be assigned same name. This is called polymorphism, which allows a single interface
performing tasks for different types. Depending upon how the function is invoked, respective portion of the
code gets executed.

Design Process

Software design process can be perceived as series of well-defined steps. Though it varies according to design
approach (function oriented or object oriented, yet It may have the following steps involved:

• A solution design is created from requirement or previous used system and/or system sequence diagram.

• Objects are identified and grouped into classes on behalf of similarity in attribute characteristics.

• Class hierarchy and relation among them is defined.

• Application framework is defined.

Software Design Approaches

Here are two generic approaches for software designing:

Top Down Design

We know that a system is composed of more than one sub-systems and it contains a number of components. Further,
these sub-systems and components may have their on set of sub-system and components and creates hierarchical
structure in the system.

Top-down design takes the whole software system as one entity and then decomposes it to achieve more than one
sub-system or component based on some characteristics. Each sub-system or component is then treated as a
system and decomposed further. This process keeps on running until the lowest level of system in the top-down
hierarchy is achieved.

Top-down design starts with a generalized model of system and keeps on defining the more specific part of it. When
all components are composed the whole system comes into existence.

Top-down design is more suitable when the software solution needs to be designed from scratch and specific details
are unknown.

Bottom-up Design

The bottom up design model starts with most specific and basic components. It proceeds with composing higher
level of components by using basic or lower level components. It keeps creating higher level components until the
desired system is not evolved as one single component. With each higher level, the amount of abstraction is
increased.

Bottom-up strategy is more suitable when a system needs to be created from some existing system, where the basic
primitives can be used in the newer system.

Both, top-down and bottom-up approaches are not practical individually. Instead, a good combination of both is used.

	Data Flow Diagram
	Types of DFD
	DFD Components
	Levels of DFD

	Structure Charts
	HIPO Diagram
	Example

	Structured English
	Example

	Pseudo-Code
	Example

	Decision Tables
	Creating Decision Table
	Example

	Entity-Relationship Model
	Data Dictionary
	Requirement of Data Dictionary
	Contents
	Example
	Data Elements
	Data Store
	Data Processing

	Software Design Strategies
	Structured Design
	Function Oriented Design
	Design Process

	Object Oriented Design
	Design Process

	Software Design Approaches
	Top Down Design
	Bottom-up Design

