
BCA 4th Semester

Sub: OS

Prepared by Dr. Sandip Mandal

Inter Process Communication and Paging System

Critical Section:

The critical section is a code segment where the shared variables can be accessed.
An atomic action is required in a critical section i.e. only one process can execute
in its critical section at a time. All the other processes have to wait to execute in
their critical sections.

Solution to the Critical Section Problem
The critical section problem needs a solution to synchronize the different
processes. The solution to the critical section problem must satisfy the following
conditions −

 Mutual Exclusion
Mutual exclusion implies that only one process can be inside the critical
section at any time. If any other processes require the critical section, they
must wait until it is free.

 Progress
Progress means that if a process is not using the critical section, then it
should not stop any other process from accessing it. In other words, any
process can enter a critical section if it is free.

 Bounded Waiting
Bounded waiting means that each process must have a limited waiting time.
Itt should not wait endlessly to access the critical section.

Semaphore

Semaphores are integer variables that are used to solve the critical section problem
by using two atomic operations wait and signal that are used for process
synchronization.

The definitions of wait and signal are as follows −

 Wait
The wait operation decrements the value of its argument S, if it is positive. If
S is negative or zero, then no operation is performed.

wait(S)

{

while (S<=0);

S--;

}

 Signal
The signal operation increments the value of its argument S.

signal(S)

{

S++;

}

Types of Semaphores
There are two main types of semaphores i.e. counting semaphores and binary
semaphores. Details about these are given as follows:

 Counting Semaphores
These are integer value semaphores and have an unrestricted value domain.
These semaphores are used to coordinate the resource access, where the
semaphore count is the number of available resources. If the resources are
added, semaphore count automatically incremented and if the resources are
removed, the count is decremented.

 Binary Semaphores
The binary semaphores are like counting semaphores but their value is
restricted to 0 and 1. The wait operation only works when the semaphore is 1

and the signal operation succeeds when semaphore is 0. It is sometimes
easier to implement binary semaphores than counting semaphores.

Advantages of Semaphores
Some of the advantages of semaphores are as follows:

 Semaphores allow only one process into the critical section. They follow the
mutual exclusion principle strictly and are much more efficient than some
other methods of synchronization.

 There is no resource wastage because of busy waiting in semaphores as
processor time is not wasted unnecessarily to check if a condition is fulfilled
to allow a process to access the critical section.

 Semaphores are implemented in the machine independent code of the
microkernel. So they are machine independent.

Disadvantages of Semaphores
Some of the disadvantages of semaphores are as follows −

 Semaphores are complicated so the wait and signal operations must be
implemented in the correct order to prevent deadlocks.

 Semaphores are impractical for last scale use as their use leads to loss of
modularity. This happens because the wait and signal operations prevent the
creation of a structured layout for the system.

 Semaphores may lead to a priority inversion where low priority processes
may access the critical section first and high priority processes later.

Counting Semaphore vs. Binary Semaphore

Here, are some major differences between counting and binary semaphore:

Counting Semaphore Binary Semaphore

No mutual exclusion Mutual exclusion

Any integer value Value only 0 and 1

More than one slot Only one slot

Provide a set of Processes It has a mutual exclusion mechanism.

Producer consumer problem using semaphore:

The producer consumer problem is a synchronization problem. There is a fixed
size buffer and the producer produces items and enters them into the buffer. The
consumer removes the items from the buffer and consumes them.

A producer should not produce items into the buffer when the consumer is
consuming an item from the buffer and vice versa. So the buffer should only be
accessed by the producer or consumer at a time.

The producer consumer problem can be resolved using semaphores. The codes for
the producer and consumer process are given as follows:

Producer Process
The code that defines the producer process is given below:

do {

 .

 . PRODUCE ITEM

 .

 wait(empty);

 wait(mutex);

 .

 . PUT ITEM IN BUFFER

 .

 signal(mutex);

 signal(full);

} while(1);

In the above code, mutex, empty and full are semaphores. Here mutex is initialized
to 1; empty is initialized to n (maximum size of the buffer) and full is initialized to
0.

The mutex semaphore ensures mutual exclusion. The empty and full semaphores
count the number of empty and full spaces in the buffer.

After the item is produced, wait operation is carried out on empty. This indicates
that the empty space in the buffer has decreased by 1. Then wait operation is
carried out on mutex so that consumer process cannot interfere.

After the item is put in the buffer, signal operation is carried out on mutex and full.
The former indicates that consumer process can now act and the latter shows that
the buffer is full by 1.

Consumer Process
The code that defines the consumer process is given below:

do {

 wait(full);

 wait(mutex);

 . .

 . REMOVE ITEM FROM BUFFER

 .

 signal(mutex);

 signal(empty);

 .

 . CONSUME ITEM

 .

} while(1);

The wait operation is carried out on full. This indicates that items in the buffer
have decreased by 1. Then wait operation is carried out on mutex so that producer
process cannot interfere.

Then the item is removed from buffer. After that, signal operation is carried out on
mutex and empty. The former indicates that consumer process can now act and the
latter shows that the empty space in the buffer has increased by 1.

Deadlock recovery

Deadlock recovery performs when a deadlock is detected.

When deadlock detected then our system stops working, and after the recovery of
the deadlock, our system start working again.

Therefore, after the detection of deadlock, a method/way must require to recover
that deadlock to run the system again. The method/way is called as deadlock
recovery.

Here are various ways of deadlock recovery that we will discuss briefly in this
tutorial.

 Deadlock recovery through preemption
 Deadlock recovery through rollback
 Deadlock recovery through killing processes

Let's discuss about all the above three ways of deadlock recovery one by one.

Deadlock Recovery through Preemption

The ability to take a resource away from a process, have another process use it, and
then give it back without the process noticing. It is highly dependent on the nature
of the resource.

Deadlock recovery through preemption is too difficult or sometime impossible.

Deadlock Recovery through Rollback

In this case of deadlock recovery through rollback, whenever a deadlock is
detected, it is easy to see which resources are needed.

To do the recovery of deadlock, a process that owns a needed resource is rolled
back to a point in time before it acquired some other resource just by starting one
of its earlier checkpoints.

Deadlock Recovery through Killing Processes

This method of deadlock recovery through killing processes is the simplest way of
deadlock recovery.

Sometime it is best to kill a process that can be return from the beginning with no
ill effects.

Virtual Memory

A computer can address more memory than the amount physically installed on the
system. This extra memory is actually called virtual memory and it is a section of
a hard disk that's set up to emulate the computer's RAM.

The main visible advantage of this scheme is that programs can be larger than
physical memory. Virtual memory serves two purposes. First, it allows us to
extend the use of physical memory by using disk. Second, it allows us to have
memory protection, because each virtual address is translated to a physical
address.

Following are the situations, when entire program is not required to be loaded
fully in main memory.

 User written error handling routines are used only when an error occurred in
the data or computation.

 Certain options and features of a program may be used rarely.

 Many tables are assigned a fixed amount of address space even though only
a small amount of the table is actually used.

 The ability to execute a program that is only partially in memory would
counter many benefits.

 Less number of I/O would be needed to load or swap each user program into
memory.

 A program would no longer be constrained by the amount of physical
memory that is available.

 Each user program could take less physical memory; more programs could
be run the same time, with a corresponding increase in CPU utilization and
throughput.

Modern microprocessors intended for general-purpose use, a memory
management unit, or MMU, is built into the hardware. The MMU's job is to
translate virtual addresses into physical addresses. A basic example is given below
−

Virtual memory is commonly implemented by demand paging. It can also be
implemented in a segmentation system. Demand segmentation can also be used to
provide virtual memory.

Demand Paging

A demand paging system is quite similar to a paging system with swapping where
processes reside in secondary memory and pages are loaded only on demand, not
in advance. When a context switch occurs, the operating system does not copy any
of the old program’s pages out to the disk or any of the new program’s pages into

the main memory Instead, it just begins executing the new program after loading
the first page and fetches that program’s pages as they are referenced.

While executing a program, if the program references a page which is not
available in the main memory because it was swapped out a little ago, the
processor treats this invalid memory reference as a page fault and transfers
control from the program to the operating system to demand the page back into
the memory.

Advantages

Following are the advantages of Demand Paging −

 Large virtual memory.
 More efficient use of memory.
 There is no limit on degree of multiprogramming.

Disadvantages

 Number of tables and the amount of processor overhead for handling page
interrupts are greater than in the case of the simple paged management
techniques.

Page Replacement Algorithm

Page replacement algorithms are the techniques using which an Operating System
decides which memory pages to swap out, write to disk when a page of memory
needs to be allocated. Paging happens whenever a page fault occurs and a free
page cannot be used for allocation purpose accounting to reason that pages are not
available or the number of free pages is lower than required pages.

When the page that was selected for replacement and was paged out, is referenced
again, it has to read in from disk, and this requires for I/O completion. This
process determines the quality of the page replacement algorithm: the lesser the
time waiting for page-ins, the better is the algorithm.

A page replacement algorithm looks at the limited information about accessing the
pages provided by hardware, and tries to select which pages should be replaced to
minimize the total number of page misses, while balancing it with the costs of
primary storage and processor time of the algorithm itself. There are many
different page replacement algorithms. We evaluate an algorithm by running it on
a particular string of memory reference and computing the number of page faults,

Reference String

The string of memory references is called reference string. Reference strings are
generated artificially or by tracing a given system and recording the address of
each memory reference. The latter choice produces a large number of data, where
we note two things.

 For a given page size, we need to consider only the page number, not the
entire address.

 If we have a reference to a page p, then any immediately following
references to page p will never cause a page fault. Page p will be in
memory after the first reference; the immediately following references will
not fault.

 For example, consider the following sequence of addresses −

123,215,600,1234,76,96

 If page size is 100, then the reference string is 1,2,6,12,0,0

First In First Out (FIFO) algorithm

 Oldest page in main memory is the one which will be selected for
replacement.

 Easy to implement, keep a list, replace pages from the tail and add new
pages at the head.

Optimal Page algorithm

 An optimal page-replacement algorithm has the lowest page-fault rate of all
algorithms. An optimal page-replacement algorithm exists, and has been
called OPT or MIN.

 Replace the page that will not be used for the longest period of time. Use the
time when a page is to be used.

Least Recently Used (LRU) algorithm

 Page which has not been used for the longest time in main memory is the
one which will be selected for replacement.

 Easy to implement, keep a list, replace pages by looking back into time.

Page buffering algorithm

 To get a process start quickly, keep a pool of free frames.
 On page fault, select a page to be replaced.
 Write the new page in the frame of free pool, mark the page table and restart

the process.
 Now write the dirty page out of disk and place the frame holding replaced

page in free pool.

Least frequently Used (LFU) algorithm

 The page with the smallest count is the one which will be selected for
replacement.

 This algorithm suffers from the situation in which a page is used heavily
during the initial phase of a process, but then is never used again.

	Solution to the Critical Section Problem
	Types of Semaphores
	Advantages of Semaphores
	Disadvantages of Semaphores
	Counting Semaphore vs. Binary Semaphore
	Producer Process
	Consumer Process
	Deadlock Recovery through Preemption
	Deadlock Recovery through Rollback
	Deadlock Recovery through Killing Processes
	Demand Paging
	Advantages
	Disadvantages

	Page Replacement Algorithm
	Reference String
	First In First Out (FIFO) algorithm
	Optimal Page algorithm
	Least Recently Used (LRU) algorithm
	Page buffering algorithm
	Least frequently Used (LFU) algorithm

